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 W
hen it comes to the world’s most respected global brands, Walt Disney Parks & Resorts 

is a visible leader. Although the monarch of this magic kingdom is no man but a mouse—

Mickey Mouse—it’s CEO Robert Iger who daily manages the entertainment giant. 

 Disney’s global portfolio includes Shanghai Disney (2016), Hong Kong Disneyland (2005), 

Disneyland Paris (1992), and Tokyo Disneyland (1983). But it is Walt 

Disney World Resort (in Florida) and Disneyland Resort (in California) 

that drive profits in this $50 billion corporation, which is ranked in the 

top 100 in both the  Fortune  500 and  Financial Times  Global 500.    

 Revenues at Disney are all about people—how many visit the 

parks and how they spend money while there. When Iger receives 

a daily report from his four theme parks and two water parks near 

Orlando, the report contains only two numbers: the  forecast  of yes-

terday’s attendance at the parks (Magic Kingdom, Epcot, Disney’s 

Animal Kingdom, Disney-Hollywood Studios, Typhoon Lagoon, and 

Blizzard Beach) and the  actual  attendance. An error close to zero is 

expected. Iger takes his forecasts very seriously. 

 The forecasting team at Walt Disney World Resort doesn’t just do 

a daily prediction, however, and Iger is not its only customer. The team 

also provides daily, weekly, monthly, annual, and 5-year forecasts to the labor management, 

maintenance, operations, finance, and park scheduling departments. Forecasters use judgmental 

models, econometric models, moving-average models, and regression analysis.          

  Forecasting Provides a Competitive 
Advantage for Disney   

   GLOBAL COMPANY PROFILE  
   Walt Disney Parks & Resorts  

    C H A P T E R    4

     Donald Duck, Goofy, and Mickey Mouse provide the public image of 

Disney to the world. Forecasts drive the work schedules of 72,000 

cast members working at Walt Disney World Resort near Orlando.  

     The giant sphere is the symbol of Epcot, 

one of Disney’s four Orlando parks, for 

which forecasts of meals, lodging, 

entertainment, and transportation must be 

made. This Disney monorail moves guests 

among parks and the 28 hotels on the 

massive 47-square-mile property (about the 

size of San Francisco and twice the size of 

Manhattan).  
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    With 20% of Walt Disney World Resort’s customers 

coming from outside the United States, its economic model 

includes such variables as gross domestic product (GDP), 

cross-exchange rates, and arrivals into the U.S. Disney also 

uses 35 analysts and 70 field people to survey 1 million 

people each year. The surveys, administered to guests at the 

parks and its 20 hotels, to employees, and to travel industry 

professionals, examine future travel plans and experiences at 

the parks. This helps forecast not only attendance but also 

behavior at each ride (e.g., how long people will wait, how 

many times they will ride). Inputs to the monthly forecast-

ing model include airline specials, speeches by the chair of 

the Federal Reserve, and Wall Street trends. Disney even 

monitors 3,000 school districts inside and outside the U.S. 

for holiday/vacation schedules. With this approach, Disney’s 

5-year attendance forecast yields just a 5% error on average. 

Its annual forecasts have a 0% to 3% error. 

 Attendance forecasts for the parks drive a whole slew of 

management decisions. For example, capacity on any day 

can be increased by opening at 8 A.M. instead of the usual 

9 A.M., by opening more shows or rides, by adding more food/

beverage carts (9 million hamburgers and 50 million Cokes 

are sold per year!), and by bringing in more employees (called 

“cast members”). Cast members are scheduled in 15-minute 

intervals throughout the parks for flexibility. Demand can be 

managed by limiting the number of guests admitted to the 

     A daily forecast of attendance is made by adjusting Disney’s annual operating 

plan for weather forecasts, the previous day’s crowds, conventions, and 

seasonal variations. One of the two water parks at Walt Disney World Resort, 

Typhoon Lagoon, is shown here.  

     Cinderella’s iconic castle is a focal point for meeting up with 

family and friends in the massive park. The statue of Walt 

Disney greets visitors to the open plaza.  
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     Forecasts are critical to making sure rides are not overcrowded. 

Disney is good at “managing demand” with techniques such as 

adding more street activities to reduce long lines for rides. On 

slow days, Disney calls fewer cast members to work.  
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parks, with the “FAST PASS” reservation system, and by shift-

ing crowds from rides to more street parades. 

 At Disney, forecasting is a key driver in the company’s 

success and competitive advantage.     
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    What Is Forecasting?  
 Every day, managers like those at Disney make decisions without knowing what will happen 
in the future. They order inventory without knowing what sales will be, purchase new equip-
ment despite uncertainty about demand for products, and make investments without knowing 
what profits will be. Managers are always trying to make better estimates of what will hap-
pen in the future in the face of uncertainty. Making good estimates is the main purpose of 
forecasting. 

 In this chapter, we examine different types of forecasts and present a variety of forecasting 
models. Our purpose is to show that there are many ways for managers to forecast. We also 
provide an overview of business sales forecasting and describe how to prepare, monitor, and 
judge the accuracy of a forecast. Good forecasts are an  essential  part of efficient service and 
manufacturing operations.   

  Forecasting  is the art and science of  predicting future events. Forecasting may involve 
taking historical data (such as past sales) and projecting them into the future with a math-
ematical model. It may be a subjective or an intuitive prediction (e.g., “this is a great 
new product and will sell 20% more than the old one”). It may be based on demand-driven 
data, such as customer plans to purchase, and projecting them into the future. Or the forecast 
may involve a combination of  these, that is, a mathematical model adjusted by a manager’s 
good judgment.   

 As we introduce different forecasting techniques in this chapter, you will see that there is 
seldom one superior method. Forecasts may be influenced by a product’s position in its life 
cycle—whether sales are in an introduction, growth, maturity, or decline stage. Other prod-
ucts can be influenced by the demand for a related product—for example, navigation systems 
may track with new car sales. Because there are limits to what can be expected from forecasts, 
we develop error measures. Preparing and monitoring forecasts can also be costly and time 
consuming. 

 Few businesses, however, can afford to avoid the process of forecasting by just waiting to 
see what happens and then taking their chances. Effective planning in both the short run and 
long run depends on a forecast of demand for the company’s products. 

   Forecasting Time Horizons    
 A forecast is usually classified by the  future time horizon  that it covers. Time horizons fall into 
three categories: 

     1. Short-range forecast:    This forecast has a time span of up to 1 year but is generally less 
than 3 months. It is used for planning purchasing, job scheduling, workforce levels, job 
assignments, and production levels.  

    2. Medium-range forecast:    A medium-range, or intermediate, forecast generally spans from 
3 months to 3 years. It is useful in sales planning, production planning and budgeting, 
cash budgeting, and analysis of various operating plans.  

    3. Long-range forecast:    Generally 3 years or more in time span, long-range forecasts are used 
in planning for new products, capital expenditures, facility location or expansion, and 
research and development.   

  STUDENT TIP     
 An increasingly complex world 

economy makes forecasting 

challenging. 

  Forecasting  

 The art and science of predicting 

future events. 

  LO 4.1   Understand  the 

three time horizons and 

which models apply for 

each 

   L E A R N I N G 
OBJECTIVES  

     LO     4.1  Understand   the three time horizons and which models apply for each 108  

    LO     4.2 Explain   when to use each of the four qualitative models 111  

    LO     4.3 Apply   the naive, moving-average, exponential smoothing, and trend methods 113  

    LO     4.4 Compute   three measures of forecast accuracy 118  

    LO     4.5 Develop   seasonal indices 127  

    LO     4.6 Conduct   a regression and correlation analysis 131  

    LO     4.7 Use   a tracking signal 138     
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CHAPTER 4  | FORECASTING 109

 Medium- and long-range forecasts are distinguished from short-range forecasts by three 
features: 

    1. First, intermediate and long-range forecasts  deal with more comprehensive issues  sup-
porting management decisions regarding planning and products, plants, and processes. 
Implementing some facility decisions, such as GM’s decision to open a new Brazilian 
manufacturing plant, can take 5 to 8 years from inception to completion.  

   2. Second, short-term forecasting usually  employs different methodologies  than longer-term 
forecasting. Mathematical techniques, such as moving averages, exponential smoothing, 
and trend extrapolation (all of which we shall examine shortly), are common to short-
run projections. Broader,  less  quantitative methods are useful in predicting such issues as 
whether a new product, like the optical disk recorder, should be introduced into a com-
pany’s product line.  

   3. Finally, as you would expect, short-range forecasts  tend to be more accurate  than longer-
range forecasts. Factors that influence demand change every day. Thus, as the time hori-
zon lengthens, it is likely that forecast accuracy will diminish. It almost goes without 
saying, then, that sales forecasts must be updated regularly to maintain their value and 
integrity. After each sales period, forecasts should be reviewed and revised.    

   Types of Forecasts  
 Organizations use three major types of forecasts in planning future operations: 

     1. Economic forecasts  address the business cycle by predicting inflation rates, money supplies, 
housing starts, and other planning indicators.    

    2. Technological forecasts  are concerned with rates of technological progress, which can result 
in the birth of exciting new products, requiring new plants and equipment.    

    3. Demand forecasts  are projections of demand for a company’s products or services. Forecasts 
drive decisions, so managers need immediate and accurate information about real 
demand. They need  demand-driven forecasts , where the focus is on rapidly identifying and 
tracking customer desires. These forecasts may use recent point-of-sale (POS) data, 
retailer-generated reports of customer preferences, and any other information that will 
help to forecast with the most current data possible. Demand-driven forecasts drive a 
company’s production, capacity, and scheduling systems and serve as inputs to financial, 
marketing, and personnel planning. In addition, the payoff in reduced inventory and 
obsolescence can be huge.     

 Economic and technological forecasting are specialized techniques that may fall outside the 
role of the operations manager. The emphasis in this chapter will therefore be on demand 
forecasting.   

   The Strategic Importance of Forecasting  
 Good forecasts are of critical importance in all aspects of a business:  The forecast is the only 
estimate of demand until actual demand becomes known.  Forecasts of demand therefore drive 
decisions in many areas. Let’s look at the impact of product demand forecast on three activi-
ties: (1) supply-chain management, (2) human resources, and (3) capacity. 

   Supply-Chain Management  
 Good supplier relations and the ensuing advantages in product innovation, cost, and speed to 
market depend on accurate forecasts. Here are just three examples: 

  ◆  Apple has built an effective global system where it controls nearly every piece of the supply 
chain, from product design to retail store. With rapid communication and accurate data 
shared up and down the supply chain, innovation is enhanced, inventory costs are reduced, 
and speed to market is improved. Once a product goes on sale, Apple tracks demand by the 

  Economic forecasts  

 Planning indicators that are 

valuable in helping organizations 

prepare medium- to long-range 

forecasts. 

  Technological forecasts  

 Long-term forecasts concerned 

with the rates of technological 

progress. 

  Demand forecasts  

 Projections of a company’s sales 

for each time period in the plan-

ning horizon. 
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110 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

hour for each store and adjusts production forecasts daily. At Apple, forecasts for its supply 
chain are a strategic weapon.  

  ◆ Toyota develops sophisticated car forecasts with input from a variety of sources, includ-
ing dealers. But forecasting the demand for accessories such as navigation systems, custom 
wheels, spoilers, and so on is particularly difficult. And there are over 1,000 items that vary 
by model and color. As a result, Toyota not only reviews reams of data with regard to vehi-
cles that have been built and wholesaled but also looks in detail at vehicle forecasts before it 
makes judgments about the future accessory demand. When this is done correctly, the result 
is an efficient supply chain and satisfied customers.  

  ◆ Walmart collaborates with suppliers such as Sara Lee and Procter & Gamble to make sure 
the right item is available at the right time in the right place and at the right price. For 
instance, in hurricane season, Walmart’s ability to analyze 700 million store–item combi-
nations means it can forecast that not only flashlights but also Pop-Tarts and beer sell at 
seven times the normal demand rate. These forecasting systems are known as  collaborative 
planning, forecasting, and replenishment  (CPFR). They combine the intelligence of multiple 
supply-chain partners. The goal of CPFR is to create significantly more accurate informa-
tion that can power the supply chain to greater sales and profits.    

   Human Resources  
 Hiring, training, and laying off workers all depend on anticipated demand. If the human 
resources department must hire additional workers without warning, the amount of training 
declines, and the quality of the workforce suffers. A large Louisiana chemical firm almost lost 
its biggest customer when a quick expansion to around-the-clock shifts led to a total break-
down in quality control on the second and third shifts.  

   Capacity  
 When capacity is inadequate, the resulting shortages can lead to loss of customers and market 
share. This is exactly what happened to Nabisco when it underestimated the huge demand 
for its new Snackwell Devil’s Food Cookies. Even with production lines working overtime, 
Nabisco could not keep up with demand, and it lost customers. Nintendo faced this problem 
when its Wii was introduced and exceeded all forecasts for demand. Amazon made the same 
error with its Kindle. On the other hand, when excess capacity exists, costs can skyrocket.   

   Seven Steps in the Forecasting System  
 Forecasting follows seven basic steps. We use Disney World, the focus of this chapter’s  Global 
Company Profile , as an example of each step: 

     1. Determine the use of the forecast:    Disney uses park attendance forecasts to drive decisions 
about staffing, opening times, ride availability, and food supplies.  

    2. Select the items to be forecasted:    For Disney World, there are six main parks. A forecast 
of daily attendance at each is the main number that determines labor, maintenance, and 
scheduling.  

    3. Determine the time horizon of the forecast:    Is it short, medium, or long term? Disney devel-
ops daily, weekly, monthly, annual, and 5-year forecasts.  

    4. Select the forecasting model(s):    Disney uses a variety of statistical models that we shall 
discuss, including moving averages, econometrics, and regression analysis. It also employs 
judgmental, or nonquantitative, models.  

    5. Gather the data needed to make the forecast:    Disney’s forecasting team employs 35 ana-
lysts and 70 field personnel to survey 1 million people/businesses every year. Disney 
also uses a firm called Global Insights for travel industry forecasts and gathers data 
on exchange rates, arrivals into the U.S., airline specials, Wall Street trends, and school 
vacation schedules.  
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    6. Make the forecast.      
    7. Validate and implement the results:    At Disney, forecasts are reviewed daily at the highest 

levels to make sure that the model, assumptions, and data are valid. Error measures are 
applied; then the forecasts are used to schedule personnel down to 15-minute intervals.   

 These seven steps present a systematic way of initiating, designing, and implementing a fore-
casting system. When the system is to be used to generate forecasts regularly over time, data 
must be routinely collected. Then actual computations are usually made by computer. 

 Regardless of the system that firms like Disney use, each company faces several realities: 

   ◆ Outside factors that we cannot predict or control often impact the forecast.  
  ◆ Most forecasting techniques assume that there is some underlying stability in the system. 

Consequently, some firms automate their predictions using computerized forecasting soft-
ware, then closely monitor only the product items whose demand is erratic.  

  ◆ Both product family and aggregated forecasts are more accurate than individual product 
forecasts. Disney, for example, aggregates daily attendance forecasts by park. This approach 
helps balance the over- and underpredictions for each of the six attractions.    

   Forecasting Approaches  
 There are two general approaches to forecasting, just as there are two ways to tackle all deci-
sion modeling. One is a quantitative analysis; the other is a qualitative approach.  Quantitative 

forecasts  use a variety of mathematical models that rely on historical data and/or associative 
variables to forecast demand. Subjective or  qualitative forecasts  incorporate such factors as the 
decision maker’s intuition, emotions, personal experiences, and value system in reaching a 
forecast. Some firms use one approach and some use the other. In practice, a combination of 
the two is usually most effective.     

   Overview of Qualitative Methods  
 In this section, we consider four different  qualitative  forecasting techniques: 

     1. Jury of executive opinion : Under this method, the opinions of a group of high-level experts or 
managers, often in combination with statistical models, are pooled to arrive at a group 
estimate of demand. Bristol-Myers Squibb Company, for example, uses 220 well-known 
research scientists as its jury of executive opinion to get a grasp on future trends in the 
world of medical research.    

    2. Delphi method : There are three different types of participants in the Delphi method: decision 
makers, staff personnel, and respondents. Decision makers usually consist of a group of 5 
to 10 experts who will be making the actual forecast. Staff personnel assist decision mak-
ers by preparing, distributing, collecting, and summarizing a series of questionnaires and 
survey results. The respondents are a group of people, often located in different places, 
whose judgments are valued. This group provides inputs to the decision makers before the 
forecast is made.   

    The state of Alaska, for example, has used the Delphi method to develop its long-
range economic forecast. A large part of the state’s budget is derived from the million-plus 
barrels of oil pumped daily through a pipeline at Prudhoe Bay. The large Delphi panel of 
experts had to represent all groups and opinions in the state and all geographic areas.    

    3. Sales force composite : In this approach, each salesperson estimates what sales will be in his 
or her region. These forecasts are then reviewed to ensure that they are realistic. Then they 
are combined at the district and national levels to reach an overall forecast. A variation of 
this approach occurs at Lexus, where every quarter Lexus dealers have a “make meeting.” 
At this meeting, they talk about what is selling, in what colors, and with what options, so 
the factory knows what to build.    

    4. Market survey : This method solicits input from customers or potential customers regarding 
future purchasing plans. It can help not only in preparing a forecast but also in improving 

  Quantitative forecasts  

 Forecasts that employ mathemati-

cal modeling to forecast demand. 

  Qualitative forecasts  

 Forecasts that incorporate such 

factors as the decision maker’s 

intuition, emotions, personal expe-

riences, and value system. 

  Jury of executive opinion  

 A forecasting technique that uses 

the opinion of a small group of 

high-level managers to form a 

group estimate of demand. 

  Delphi method  

 A forecasting technique using a 

group process that allows experts 

to make forecasts. 

  LO 4.2   Explain  when 

to use each of the four 

qualitative models 

  Sales force composite  

 A forecasting technique based 

on salespersons’ estimates of 

expected sales. 

  Market survey  

 A forecasting method that solicits 

input from customers or potential 

customers regarding future 

purchasing plans. 
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112 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

product design and planning for new products. The consumer market survey and sales 
force composite methods can, however, suffer from overly optimistic forecasts that arise 
from customer input.      

   Overview of Quantitative Methods   1     
 Five quantitative forecasting methods, all of which use historical data, are described in this 
chapter. They fall into two categories: 

    1. Naive approach  
   2. Moving averages  
   3. Exponential smoothing 

(
'
)

'
*

 
 
Time-series models   

   4. Trend projection  
   5. Linear regression 

"  Associative model    

   Time-Series Models     Time-series  models predict on the assumption that the future is a 
function of the past. In other words, they look at what has happened over a period of time and 
use a series of past data to make a forecast. If we are predicting sales of lawn mowers, we use 
the past sales for lawn mowers to make the forecasts.    

   Associative Models    Associative models, such as linear regression, incorporate the vari-
ables or factors that might influence the quantity being forecast. For example, an associative 
model for lawn mower sales might use factors such as new housing starts, advertising budget, 
and competitors’ prices.    

   Time-Series Forecasting  
 A time series is based on a sequence of evenly spaced (weekly, monthly, quarterly, and so 
on) data points. Examples include weekly sales of Nike Air Jordans, quarterly earnings 
reports of Microsoft stock, daily shipments of Coors beer, and annual consumer price indices. 
Forecasting time-series data implies that future values are predicted  only  from past values and 
that other variables, no matter how potentially valuable, may be ignored.   

   Decomposition of a Time Series  
 Analyzing time series means breaking down past data into components and then projecting 
them forward. A time series has four components: 

     1. Trend    is the gradual upward or downward movement of the data over time. Changes 
in income, population, age distribution, or cultural views may account for movement in 
trend.  

    2. Seasonality    is a data pattern that repeats itself after a period of days, weeks, months, or 
quarters. There are six common seasonality patterns:        

PERIOD LENGTH “SEASON” LENGTH NUMBER OF “SEASONS” IN PATTERN

Week Day 7

Month Week 4–4 12 

Month Day 28–31

Year Quarter 4

Year Month 12

Year Week 52

    Restaurants and barber shops, for example, experience weekly seasons, with Saturday 
being the peak of business. See the  OM in Action  box “Forecasting at Olive Garden.” Beer 
distributors forecast yearly patterns, with monthly seasons. Three “seasons”—May, July, 
and September—each contain a big beer-drinking holiday.  

  Time series  

 A forecasting technique that uses 

a series of past data points to 

make a forecast. 

  STUDENT TIP    
 Here is the meat of this 

chapter. We now show you a 

wide variety of models that use 

time-series data. 

  STUDENT TIP    
 The peak “seasons” for sales 

of Frito-Lay chips are the Super 

Bowl, Memorial Day, Labor 

Day, and the Fourth of July. 
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CHAPTER 4  | FORECASTING 113

    3. Cycles    are patterns in the data that occur every several years. They are usually tied into 
the business cycle and are of major importance in short-term business analysis and plan-
ning. Predicting business cycles is difficult because they may be affected by political events 
or by international turmoil.  

    4. Random variations    are “blips” in the data caused by chance and unusual situations. They 
follow no discernible pattern, so they cannot be predicted.     

   Figure   4.1   illustrates a demand over a 4-year period. It shows the average, trend, seasonal 
components, and random variations around the demand curve. The average demand is the 
sum of the demand for each period divided by the number of data periods.   

   Naive Approach  
 The simplest way to forecast is to assume that demand in the next period will be equal to 
demand in the most recent period. In other words, if sales of a product—say, Nokia cell 
phones—were 68 units in January, we can forecast that February’s sales will also be 68 phones. 

  LO 4.3   Apply  the 

naive, moving-average, 

exponential smoothing, 

and trend methods 

 Forecasting at Olive Garden   

 It’s Friday night in the college town of Gainesville, Florida, and the local Olive 

Garden restaurant is humming. Customers may wait an average of 30 minutes 

for a table, but they can sample new wines and cheeses and admire scenic 

paintings of Italian villages on the Tuscan-style restaurant’s walls. Then comes 

dinner with portions so huge that many people take home a doggie bag. The 

typical bill: under $15 per person.    

 Crowds flock to the Darden restaurant chain’s Olive Garden, Seasons 52, 

and Bahama Breeze for value and consistency— and  they get it. 

 Every night, Darden’s computers crank out forecasts that tell store manag-

ers what demand to anticipate the next day. The forecasting software gener-

ates a total meal forecast and breaks that down into specific menu items. The 

system tells a manager, for instance, that if 625 meals will be served the next 

day, “you will serve these items in these quantities. So before you go home, 

pull 25 pounds of shrimp and 30 pounds of crab out, and tell your operations 

people to prepare 42 portion packs of chicken, 75 scampi dishes, 8 stuffed 

flounders, and so on.” Managers often fine-tune the quantities based on local 

conditions, such as weather or a convention, but they know what their custom-

ers are going to order. 

   OM in Action 

 By relying on demand history, the forecasting system has cut millions of 

dollars of waste out of the system. The forecast also reduces labor costs by pro-

viding the necessary information for improved scheduling. Labor costs decreased 

almost a full percent in the first year, translating into additional millions in savings 

for the Darden chain. In the low-margin restaurant business, every dollar counts. 

Sources:   InformationWeek  (April 1, 2014); USA Today (Oct. 13, 2014); and 

FastCompany  (July-August 2009).  
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      Figure   4.1   

 Demand Charted over 4 Years, 

with a Growth Trend and 

Seasonality Indicated    

    STUDENT TIP  
 Forecasting is easy when 

demand is stable. But with 

trend, seasonality, and cycles 

considered, the job is a lot 

more interesting. 
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114 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

Does this make any sense? It turns out that for some product lines, this  naive approach  is the 
most cost-effective and efficient objective forecasting model. At least it provides a starting 
point against which more sophisticated models that follow can be compared.       

   Moving Averages  
 A  moving-average  forecast uses a number of historical actual data values to generate a forecast. 
Moving averages are useful  if we can assume that market demands will stay fairly steady over 
time . A 4-month moving average is found by simply summing the demand during the past 
4 months and dividing by 4. With each passing month, the most recent month’s data are added 
to the sum of the previous 3 months’ data, and the earliest month is dropped. This practice 
tends to smooth out short-term irregularities in the data series.   

 Mathematically, the simple moving average (which serves as an estimate of the next period’s 
demand) is expressed as: 

Moving average =
g  demand in previous n periods

n    (4-1)   

 where  n  is the number of periods in the moving average—for example, 4, 5, or 6 months, 
respectively, for a 4-, 5-, or 6-period moving average. 

   Example   1   shows how moving averages are calculated.  

  Naive approach  

 A forecasting technique that 

assumes that demand in the next 

period is equal to demand in the 

most recent period. 

  Moving averages  

 A forecasting method that uses 

an average of the  n  most recent 

periods of data to forecast the next 

period. 

 Donna’s Garden Supply wants a 3-month moving-average forecast, including a forecast for next 
January, for shed sales. 

   APPROACH c     Storage shed sales are shown in the middle column of the following table. A 3-month 
moving average appears on the right.   

    Example   1   DETERMINING THE MOVING AVERAGE   

MONTH ACTUAL SHED SALES 3-MONTH MOVING AVERAGE

January 10
February 12
March 13
April 16  (10 + 12 + 13)/3 =   112

3 
May 19  (12 + 13 + 16)/3 =   132

3 
June 23  (13 + 16 + 19)/3 = 16 
July 26  (16 + 19 + 23)/3 =   191

3 
August 30  (19 + 23 + 26)/3 =   222

3 
September 28  (23 + 26 + 30)/3 =   261

3 
October 18  (26 + 30 + 28)/3 = 28 
November 16  (30 + 28 + 18)/3 =   251

3 
December 14  (28 + 18 + 16)/3 =   202

3 

   SOLUTION c     The forecast for December is  202
3 . To project the demand for sheds in the coming 

January, we sum the October, November, and December sales and divide by 3: January forecast 
 =  (18 + 16 + 14)/3 = 16.   

   INSIGHT c     Management now has a forecast that averages sales for the last 3 months. It is easy to use 
and understand.  

   LEARNING EXERCISE c     If actual sales in December were 18 (rather than 14), what is the new 
January forecast? [Answer:  171

3. ]  

   RELATED PROBLEMS c     4.1a, 4.2b, 4.5a, 4.6, 4.8a, b, 4.10a, 4.13b, 4.15, 4.33 (4.35, 4.38 are available 
in MyOMLab) 

EXCEL OM Data File Ch04Ex1.xls can be found in MyOMLab.  

  ACTIVE MODEL 4.1 This example is further illustrated in Active Model 4.1 in MyOMLab.   
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CHAPTER 4  | FORECASTING 115

 When a detectable trend or pattern is present,  weights  can be used to place more emphasis on 
recent values. This practice makes forecasting techniques more responsive to changes because 
more recent periods may be more heavily weighted. Choice of weights is somewhat arbitrary 
because there is no set formula to determine them. Therefore, deciding which weights to use 
requires some experience. For example, if  the latest month or period is weighted too heavily, the 
forecast may reflect a large unusual change in the demand or sales pattern too quickly. 

 A weighted moving average may be expressed mathematically as: 

    Weighted moving average =
g  ((Weight for period n)(Demand in period n))

g  Weights
   (4-2)   

   Example   2   shows how to calculate a weighted moving average.  

    Example   2   DETERMINING THE WEIGHTED MOVING AVERAGE   

 Donna’s Garden Supply (see   Example   1  ) wants to forecast storage shed sales by weighting the past 
3 months, with more weight given to recent data to make them more significant. 

   APPROACH c     Assign more weight to recent data, as follows:   

WEIGHTS APPLIED PERIOD

3 Last month
2 Two months ago

 
1
6

 
 Three months ago 
 Sum of weights 

 Forecast for this month =   

   
3 * Sales last mo. + 2 * Sales 2 mos. ago + 1 * Sales 3 mos. ago

 Sum of the weights
    

   SOLUTION c     The results of this weighted-average forecast are as follows:   

MONTH ACTUAL SHED SALES 3-MONTH WEIGHTED MOVING AVERAGE

January 10

February 12

March 13

April 16  [(3 * 13) + (2 * 12) + (10)]/6 =   121
6 

May 19  [(3 * 16) + (2 * 13) + (12)]/6 =   141
3 

June 23  [(3 * 19) + (2 * 16) + (13)]/6 =  17

July 26  [(3 * 23) + (2 * 19) + (16)]/6 =   201
2 

August 30  [(3 * 26) + (2 * 23) + (19)]/6 =   235
6 

September 28  [(3 * 30) + (2 * 26) + (23)]/6 =   271
2 

October 18  [(3 * 28) + (2 * 30) + (26)]/6 =   281
3 

November 16  [(3 * 18) + (2 * 28) + (30)]/6 =   231
3 

December 14  [(3 * 16) + (2 * 18) + (28)]/6 =   182
3 

 The forecast for January is 151
3. Do you see how this number is computed?   

   INSIGHT c     In this particular forecasting situation, you can see that more heavily weighting the latest 
month provides a more accurate projection.  

   LEARNING EXERCISE c     If the assigned weights were 0.50, 0.33, and 0.17 (instead of 3, 2, and 1), 
what is the forecast for January’s weighted moving average? Why? [Answer: There is no change. These 
are the same  relative  weights. Note that  g   weights  =  1 now, so there is no need for a denominator. When 
the weights sum to 1, calculations tend to be simpler.]  

   RELATED PROBLEMS c     4.1b, 4.2c, 4.5c, 4.6, 4.7, 4.10b (4.38 is available in MyOMLab) 

  EXCEL OM Data File Ch04Ex2.xls can be found in MyOMLab.     
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116 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 Both simple and weighted moving averages are effective in smoothing out sudden fluctuations 
in the demand pattern to provide stable estimates. Moving averages do, however, present three 
problems: 

    1. Increasing the size of  n  (the number of periods averaged) does smooth out fluctuations 
better, but it makes the method less sensitive to changes in the data.  

   2. Moving averages cannot pick up trends very well. Because they are averages, they will 
always stay within past levels and will not predict changes to either higher or lower levels. 
That is, they  lag  the actual values.  

   3. Moving averages require extensive records of past data.   

   Figure   4.2  , a plot of the data in   Examples   1   and   2  , illustrates the lag effect of the moving-
average models. Note that both the moving-average and weighted-moving-average lines lag 
the actual demand. The weighted moving average, however, usually reacts more quickly to 
demand changes. Even in periods of downturn (see November and December), it more closely 
tracks the demand.   

   Exponential Smoothing  
  Exponential smoothing  is another weighted-moving-average forecasting method. It involves very 
 little  record keeping of past data and is fairly easy to use. The basic exponential smoothing 
formula can be shown as follows:   

   New forecast = Last period’s forecast
 + a (Last period’s actual demand − Last period’s forecast)   (4-3)   

 where  a  is a weight, or  smoothing constant , chosen by the forecaster, that has a value greater 
than or equal to 0 and less than or equal to 1.   Equation   (4-3)   can also be written mathemati-
cally as:   

    Ft = Ft91 + a (At91 - Ft91)   (4-4)   

   where  F t   =  new forecast  
    Ft91 =  previous period’s forecast  
    a =  smoothing (or weighting) constant  (0 … a … 1)   
    At91 =  previous period’s actual demand   

  STUDENT TIP    
 Moving-average methods 

always lag behind when there 

is a trend present, as shown by 

the blue line (actual sales) for 

January through August. 

  Exponential smoothing  

 A weighted-moving-average 

forecasting technique in which 

data points are weighted by an 

exponential function. 

  Smoothing constant  

 The weighting factor used in an 

exponential smoothing forecast, a 

number greater than or equal to 0 

and less than or equal to 1. 

Weighted moving average (from Example 2)

Actual sales

Moving average (from Example 1)

Month
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

S
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20

15

10

5

25

30

      Figure   4.2   

 Actual Demand vs. Moving-

Average and Weighted-

Moving-Average Methods for 

Donna’s Garden Supply    
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CHAPTER 4  | FORECASTING 117

 The concept is not complex. The latest estimate of demand is equal to the old forecast adjusted 
by a fraction of the difference between the last period’s actual demand and last period’s fore-
cast.   Example   3   shows how to use exponential smoothing to derive a forecast.  

 In January, a car dealer predicted February demand for 142 Ford Mustangs. Actual February demand 
was 153 autos. Using a smoothing constant chosen by management of  a  = .20, the dealer wants to fore-
cast March demand using the exponential smoothing model. 

   APPROACH c     The exponential smoothing model in   Equations   (4-3)   and   (4-4)   can be applied.  

   SOLUTION c     Substituting the sample data into the formula, we obtain: 

   New forecast (for March demand) = 142 + .2(153 - 142) = 142 + 2.2
 = 144.2   

 Thus, the March demand forecast for Ford Mustangs is rounded to 144.  

   INSIGHT c     Using just two pieces of data, the forecast and the actual demand, plus a smoothing con-
stant, we developed a forecast of 144 Ford Mustangs for March.  

   LEARNING EXERCISE c     If the smoothing constant is changed to .30, what is the new forecast? 
 [Answer: 145.3]  

   RELATED PROBLEMS c     4.1c, 4.3, 4.4, 4.5d, 4.6, 4.9d, 4.11, 4.12, 4.13a, 4.17, 4.18, 4.31, 4.33, 4.34 
(4.36, 4.61a are available in MyOMLab)  

    Example   3   DETERMINING A FORECAST VIA EXPONENTIAL SMOOTHING   

 The  smoothing constant ,  a , is generally in the range from .05 to .50 for business applications. 
It can be changed to give more weight to recent data (when  a  is high) or more weight to past 
data (when  a  is low). When  a  reaches the extreme of 1.0, then in   Equation   (4-4)  ,  F t   5 1.0 A   t 21 . 
All the older values drop out, and the forecast becomes identical to the naive model mentioned 
earlier in this chapter. That is, the forecast for the next period is just the same as this period’s 
demand. 

 The following table helps illustrate this concept. For example, when  a = .5 , we can see that 
the new forecast is based almost entirely on demand in the last three or four periods. When 
a = .1 , the forecast places little weight on recent demand and takes many periods (about 19) 
of historical values into account.   

 WEIGHT ASSIGNED TO 

SMOOTHING 
CONSTANT

MOST RECENT 
PERIOD ( A )

2ND MOST RECENT 
PERIOD  A (12A )

3RD MOST 
RECENT PERIOD 

A (12 A ) 2

4TH MOST 
RECENT PERIOD 

A (12A ) 3

5TH MOST 
RECENT PERIOD 

A (12A ) 4

a = .1 .1 .09 .081 .073 .066

a = .5 .5 .25 .125 .063 .031

   Selecting the Smoothing Constant    Exponential smoothing has been successfully 
applied in virtually every type of business. However, the appropriate value of the smoothing 
constant,  a , can make the difference between an accurate forecast and an inaccurate forecast. 
High values of  a  are chosen when the underlying average is likely to change. Low values of  a  
are used when the underlying average is fairly stable. In picking a value for the smoothing 
constant, the objective is to obtain the most accurate forecast.   

   Measuring Forecast Error  
 The overall accuracy of any forecasting model—moving average, exponential smoothing, or 
other—can be determined by comparing the forecasted values with the actual or observed 

  STUDENT TIP    
 Forecasts tend to be more 

accurate as they become 

shorter. Therefore, forecast 

error also tends to drop with 

shorter forecasts. 
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118 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

values. If  F t   denotes the forecast in period  t , and  A t   denotes the actual demand in period  t , the 
 forecast error  (or deviation) is defined as:   
    Forecast error = Actual demand - Forecast value
 = At - Ft   
 Several measures are used in practice to calculate the overall forecast error. These measures 
can be used to compare different forecasting models, as well as to monitor forecasts to ensure 
they are performing well. Three of the most popular measures are mean absolute deviation 
(MAD), mean squared error (MSE), and mean absolute percent error (MAPE). We now 
describe and give an example of each.   

   Mean Absolute Deviation    The first measure of the overall forecast error for a model is 
the  mean absolute deviation (MAD) . This value is computed by taking the sum of the absolute values 
of the individual forecast errors (deviations) and dividing by the number of periods of data ( n ):   

    MAD =
g � Actual - Forecast �

n    (4-5)   

   Example   4   applies MAD, as a measure of overall forecast error, by testing two values of  a .  

  LO 4.4   Compute  three 

measures of forecast 

accuracy 

  Mean absolute 
deviation (MAD)  

 A measure of the overall forecast 

error for a model. 

 During the past 8 quarters, the Port of Baltimore has unloaded large quantities of grain from ships. The 
port’s operations manager wants to test the use of exponential smoothing to see how well the technique 
works in predicting tonnage unloaded. He guesses that the forecast of grain unloaded in the first quarter 
was 175 tons. Two values of  a  are to be examined:  a = .10  and  a = .50.  

   APPROACH c     Compare the actual data with the data we forecast (using each of the two  a  values) and 
then find the absolute deviation and MADs.  

   SOLUTION c     The following table shows the  detailed  calculations for  a = .10  only:   

QUARTER
ACTUAL TONNAGE 

UNLOADED FORECAST WITH  A  = .10
FORECAST WITH

 A  = .50

1 180 175 175
2 168  175.50 = 175.00 + .10(180 - 175) 177.50

3 159  174.75 = 175.50 + .10(168 - 175.50) 172.75

4 175  173.18 = 174.75 + .10(159 - 174.75) 165.88

5 190  173.36 = 173.18 + .10(175 - 173.18) 170.44

6 205  175.02 = 173.36 + .10(190 - 173.36) 180.22

7 180  178.02 = 175.02 + .10(205 - 175.02) 192.61

8 182  178.22 = 178.02 + .10(180 - 178.02) 186.30

9 ?  178.59 = 178.22 + .10(182 - 178.22) 184.15

 To evaluate the accuracy of each smoothing constant, we can compute forecast errors in terms of abso-
lute deviations and MADs:   

QUARTER
ACTUAL TONNAGE 

UNLOADED
FORECAST WITH 

 A  = .10

ABSOLUTE 
DEVIATION 
FOR  A  = .10

FORECAST 
WITH 

 A  = .50

ABSOLUTE 
DEVIATION 
FOR  A  = .50

1 180 175 5.00 175 5.00
2 168 175.50 7.50 177.50 9.50
3 159 174.75 15.75 172.75 13.75
4 175 173.18 1.82 165.88 9.12
5 190 173.36 16.64 170.44 19.56
6 205 175.02 29.98 180.22 24.78
7 180 178.02 1.98 192.61 12.61
8 182 178.22    3.78 186.30    4.30 

Sum of absolute deviations: 82.45 98.62

 MAD =
g � Deviations �

n
 10.31 12.33

    Example   4   DETERMINING THE MEAN ABSOLUTE DEVIATION (MAD)   
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CHAPTER 4  | FORECASTING 119

 Most computerized forecasting software includes a feature that automatically finds the 
smoothing constant with the lowest forecast error. Some software modifies the  a  value if 
errors become larger than acceptable.  

   Mean Squared Error    The  mean squared error (MSE)  is a second way of measuring overall 
forecast error. MSE is the average of the squared differences between the forecasted and 
observed values. Its formula is:   

MSE =
g (Forecast errors)2

n    (4-6)   

   Example   5   finds the MSE for the Port of Baltimore problem introduced in   Example   4  .  

  Mean squared error (MSE)  

 The average of the squared differ-

ences between the forecasted and 

observed values. 

   INSIGHT c     On the basis of this comparison of the two MADs, a smoothing constant of  a =  .10 is 
preferred to  a =  .50 because its MAD is smaller.  

   LEARNING EXERCISE c     If the smoothing constant is changed from  a =  .10 to  a =  .20, what is the 
new MAD? [Answer: 10.21.]  

   RELATED PROBLEMS c     4.5b, 4.8c, 4.9c, 4.14, 4.23, 4.59b (4.35d, 4.37a, 4.38c, 4.61b are available 
in MyOMLab) 

  EXCEL OM Data File Ch04Ex4a.xls and Ch04Ex4b.xls can be found in MyOMLab.  

  ACTIVE MODEL 4.2 This example is further illustrated in Active Model 4.2 in MyOMLab.   

    Example   5   DETERMINING THE MEAN SQUARED ERROR (MSE)   

 The operations manager for the Port of Baltimore now wants to compute MSE for  a =  .10. 

APPROACH c     Using the same forecast data for  a =  .10 from   Example   4  , compute the MSE with 
  Equation   (4-6)  .  

   SOLUTION c      

QUARTER
ACTUAL TONNAGE 

UNLOADED
FORECAST FOR 

 A  = .10 (ERROR) 2 

1 180 175  52 = 25 
2 168 175.50  (-7.5)2 = 56.25 
3 159 174.75  (-15.75)2 = 248.06 
4 175 173.18  (1.82)2 = 3.31 
5 190 173.36  (16.64)2 = 276.89 
6 205 175.02  (29.98)2 = 898.80 
7 180 178.02  (1.98)2 = 3.92 
8 182 178.22  (3.78)2 = 14.29 

Sum of errors squared =  1,526.52

   MSE =
g(Forecast errors)2

n
= 1,526.52/8 = 190.8    

   INSIGHT c     Is this MSE =  190.8 good or bad? It all depends on the MSEs for other forecasting 
approaches. A low MSE is better because we want to minimize MSE. MSE exaggerates errors because 
it squares them.  

   LEARNING EXERCISE c     Find the MSE for  a =  .50. [Answer: MSE = 195.24. The result indicates 
that  a =  .10 is a better choice because we seek a lower MSE. Coincidentally, this is the same conclusion 
we reached using MAD in   Example   4  .]  

   RELATED PROBLEMS c     4.8d, 4.11c, 4.14, 4.15c, 4.16c, 4.20  (4.35d, 4.37b are available in MyOMLab)  
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120 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 The MSE tends to accentuate large deviations due to the squared term. For example, if the 
forecast error for period 1 is twice as large as the error for period 2, the squared error in period 
1 is four times as large as that for period 2. Hence, using MSE as the measure of forecast error 
typically indicates that we prefer to have several smaller deviations rather than even one large 
deviation.  

   Mean Absolute Percent Error    A problem with both the MAD and MSE is that their 
values depend on the magnitude of the item being forecast. If the forecast item is measured in 
thousands, the MAD and MSE values can be very large. To avoid this problem, we can use 
the  mean absolute percent error (MAPE) . This is computed as the average of the absolute difference 
between the forecasted and actual values, expressed as a percentage of the actual values. That 
is, if we have forecasted and actual values for  n  periods, the MAPE is calculated as:   

MAPE =
a

n

i = 1
100 � Actuali - Forecasti � >Actuali

n    (4-7)   

   Example   6   illustrates the calculations using the data from   Examples   4   and   5  .  

  Mean absolute percent 
error (MAPE)  

 The average of the absolute 

differences between the forecast 

and actual values, expressed as a 

percent of actual values. 

 The Port of Baltimore wants to now calculate the MAPE when  a =  .10. 

   APPROACH c       Equation   (4-7)   is applied to the forecast data computed in   Example   4  .  

   SOLUTION c      

QUARTER
ACTUAL TONNAGE 

UNLOADED
FORECAST FOR 

 A  = .10
ABSOLUTE PERCENT ERROR 

100 (|ERROR|/ACTUAL)

1 180 175.00  100(5/180) = 2.78% 

2 168 175.50  100(7.5/168) = 4.46% 
3 159 174.75  100(15.75/159) = 9.90% 
4 175 173.18  100(1.82/175) = 1.05% 
5 190 173.36  100(16.64/190) = 8.76% 
6 205 175.02  100(29.98/205) = 14.62% 
7 180 178.02  100(1.98/180) = 1.10% 
8 182 178.22  100(3.78/182) = 2.08% 

Sum of % errors =  44.75%

   MAPE =
g  absolute percent error

n
=

44.75%
8

= 5.59%    

   INSIGHT c     MAPE expresses the error as a percent of the actual values, undistorted by a single large 
value.  

   LEARNING EXERCISE c     What is MAPE when  a  is .50? [Answer: MAPE = 6.75%. As was the case 
with MAD and MSE, the  a =  .1 was preferable for this series of data.]  

   RELATED PROBLEMS c     4.8e, 4.29c  

    Example   6   DETERMINING THE MEAN ABSOLUTE PERCENT ERROR (MAPE)   

 The MAPE is perhaps the easiest measure to interpret. For example, a result that the MAPE is 
6% is a clear statement that is not dependent on issues such as the magnitude of the input data.

Table 4.1 summarizes how MAD, MSE, and MAPE differ.   

   Exponential Smoothing with Trend Adjustment  
 Simple exponential smoothing, the technique we just illustrated in   Examples   3   to   6  , is like any 
other moving-average technique: It fails to respond to trends. Other forecasting techniques 
that can deal with trends are certainly available. However, because exponential smoothing is 
such a popular modeling approach in business, let us look at it in more detail. 
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CHAPTER 4  | FORECASTING 121

 Here is why exponential smoothing must be modified when a trend is present. Assume that 
demand for our product or service has been increasing by 100 units per month and that we 
have been forecasting with  a =  0.4 in our exponential smoothing model. The following table 
shows a severe lag in the second, third, fourth, and fifth months, even when our initial estimate 
for month 1 is perfect:   

MONTH ACTUAL DEMAND FORECAST ( F t  ) FOR MONTHS 1–5

1 100  F1 = 100 (given) 

2 200  F2 = F1 + a(A1 - F1) = 100 + .4(100 - 100) = 100 

3 300  F3 = F2 + a(A2 - F2) = 100 + .4(200 - 100) = 140 

4 400  F4 = F3 + a(A3 - F3) = 140 + .4(300 - 140) = 204 

5 500  F5 = F4 + a(A4 - F4) = 204 + .4(400 - 204) = 282 

 To improve our forecast, let us illustrate a more complex exponential smoothing model, one 
that adjusts for trend. The idea is to compute an exponentially smoothed average of the data 
and then adjust for positive or negative lag in trend. The new formula is: 

    Forecast including trend (FITt) = Exponentially smoothed forecast average (Ft)
 + Exponentially smoothed trend (Tt)   (4-8)   

 With trend-adjusted exponential smoothing, estimates for both the average and the trend are 
smoothed. This procedure requires two smoothing constants:  a  for the average and  b  for the 
trend. We then compute the average and trend each period: 

   Ft = a(Actual demand last period) + (1 - a)(Forecast last period + Trend estimate last period)   

 or: 
    Ft = a(At - 1) + (1 - a)(Ft - 1 + Tt - 1)   (4-9)

     Tt = b(Forecast this period - Forecast last period) + (1 - b)(Trend estimate last period)  

 or: 

    Tt = b(Ft - Ft - 1) + (1 - b)Tt - 1   (4-10)   

   where  F t      =  exponentially smoothed forecast average of the data series in period  t   
    T t      =  exponentially smoothed trend in period  t   
    A t      =  actual demand in period  t   
    a  = smoothing constant for the average  (0 … a … 1)   
    b  = smoothing constant for the trend  (0 … b … 1)    

     TABLE   4.1      Comparison of Measures of Forecast Error    

MEASURE MEANING EQUATION APPLICATION TO CHAPTER  EXAMPLE 

Mean absolute 
deviation (MAD)

How much the 
forecast missed 
the target

 MAD =
g 0Actual - Forecast 0

n
 (4-5) 

For a = .10 in   Example   4  , the forecast 
for grain unloaded was off by an 
average of 10.31 tons.

Mean squared 
error (MSE)

The square of 
how much the 
forecast missed 
the target

 MSE =
g (Forecast errors)2

 n
 (4-6) 

For a = .10 in   Example   5  , the 
square of the forecast error was 
190.8. This number does not have a 
physical meaning but is useful when 
compared to the MSE of another 
forecast.

Mean absolute 
percent error 
(MAPE)

The average 
percent error

 MAPE =
a
n

i = 1
100 � Actuali - Forecasti � >Actuali

n
 (4-7) 

For a = .10 in   Example   6  , the forecast 
is off by 5.59% on average. As in 
  Examples   4   and   5  , some forecasts 
were too high, and some were low.
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122 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 So the three steps to compute a trend-adjusted forecast are: 

    STEP     1:     Compute  F t  , the exponentially smoothed forecast average for period  t , using 
  Equation   (4-9)  .  

   STEP     2:     Compute the smoothed trend,  T t  , using   Equation   (4-10)  .  
   STEP     3:     Calculate the forecast including trend,  FIT t  , by the formula  FIT t    = F t   +   T t   [from 

  Equation   (4-8)  ].   

   Example   7   shows how to use trend-adjusted exponential smoothing.  

 A large Portland manufacturer wants to forecast demand for a piece of pollution-control equipment. A 
review of past sales, as shown below, indicates that an increasing trend is present:   

MONTH ( t ) ACTUAL DEMAND ( A t  ) MONTH ( t ) ACTUAL DEMAND ( A t  )

1 12 6 21

2 17 7 31

3 20 8 28

4 19 9 36

5 24 10 ?

 Smoothing constants are assigned the values of  a =  .2 and  b =  .4. The firm assumes the initial forecast 
average for month 1 ( F  1 ) was 11 units and the trend over that period ( T  1 ) was 2 units. 

   APPROACH c     A trend-adjusted exponential smoothing model, using   Equations   (4-9)  ,   (4-10)  , and 
  (4-8)   and the three steps above, is employed.  

   SOLUTION c    

    Step     1:    Forecast average for month 2: 

    F2 = aA1 + (1 - a)(F1 + T1)
 F2 = (.2)(12) + (1 - .2)(11 + 2)
 = 2.4 + (.8)(13) = 2.4 + 10.4 = 12.8 units    

   Step     2:    Compute the trend in period 2: 

    T2 = b(F2 - F1) + (1 - b)T1

 = .4(12.8 - 11) + (1 - .4)(2)
 = (.4)(1.8) + (.6)(2) = .72 + 1.2 = 1.92    

   Step     3:    Compute the forecast including trend ( FIT t  ): 

    FIT2 = F2 + T2
 = 12.8 + 1.92
 = 14.72 units     

 We will also do the same calculations for the third month: 

    Step     1:     F3 = aA2 + (1 - a)(F2 + T2) = (.2)(17) + (1 - .2)(12.8 + 1.92)  
   = 3.4 + (.8)(14.72) = 3.4 + 11.78 = 15.18   

   Step     2:     T3 = b(F3 - F2) + (1 - b)T2 = (.4)(15.18 - 12.8) + (1 - .4)(1.92)  
   = (.4)(2.38) + (.6)(1.92) = .952 + 1.152 = 2.10   

   Step     3:     FIT3 = F3 + T3  
   = 15.18 + 2.10 = 17.28.    

    Example   7   COMPUTING A TREND-ADJUSTED EXPONENTIAL SMOOTHING FORECAST   
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   Table   4.2   completes the forecasts for the 10-month period.   

     TABLE   4.2     Forecast with  A  5 .2 and  B  5 .4    

MONTH ACTUAL 
DEMAND

SMOOTHED FORECAST 
AVERAGE, F  t  

SMOOTHED 
TREND, T  t  

FORECAST INCLUDING 
TREND, FIT  t  

1 12 11 2 13.00
2 17 12.80 1.92 14.72
3 20 15.18 2.10 17.28
4 19 17.82 2.32 20.14
5 24 19.91 2.23 22.14
6 21 22.51 2.38 24.89
7 31 24.11 2.07 26.18
8 28 27.14 2.45 29.59
9 36 29.28 2.32 31.60

10 — 32.48 2.68 35.16

INSIGHT c       Figure   4.3   compares actual demand ( A t  ) to an exponential smoothing forecast that includes 
trend ( FIT t  ).  FIT  picks up the trend in actual demand. A simple exponential smoothing model (as we saw 
in   Examples   3   and   4  ) trails far behind.   

   LEARNING EXERCISE c     Using the data for actual demand for the 9 months, compute the exponen-
tially smoothed forecast average  without  trend [using   Equation   (4-4)   as we did earlier in   Examples   3   and 
  4  ]. Apply  a =  .2, and assume an initial forecast average for month 1 of 11 units. Then plot the months 
2–10 forecast values on   Figure   4.3  . What do you notice? [Answer: Month 10 forecast =  24.65. All the 
points are below and lag the trend-adjusted forecast.]  

   RELATED PROBLEMS c     4.19, 4.20, 4.21, 4.22, 4.32 

  ACTIVE MODEL 4.3 This example is further illustrated in Active Model 4.3 in MyOMLab.  

  EXCEL OM Data File Ch04Ex7.xis can be found in MyOMLab.   
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   Figure   4.3   

 Exponential Smoothing with 

Trend-Adjustment Forecasts 

Compared to Actual Demand 
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124 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 The value of the trend-smoothing constant,  b , resembles the  a  constant because a high  b  is 
more responsive to recent changes in trend. A low  b  gives less weight to the most recent trends 
and tends to smooth out the present trend. Values of  b  can be found by the trial-and-error 
approach or by using sophisticated commercial forecasting software, with the MAD used as a 
measure of comparison. 

 Simple exponential smoothing is often referred to as  first-order smoothing , and trend-
adjusted smoothing is called  second-order smoothing  or  double smoothing . Other advanced 
exponential-smoothing models are also used, including seasonal-adjusted and triple smoothing.   

   Trend Projections  
 The last time-series forecasting method we will discuss is  trend projection . This technique fits 
a trend line to a series of historical data points and then projects the slope of the line into 
the future for medium- to long-range forecasts. Several mathematical trend equations can be 
developed (for example, exponential and quadratic), but in this section, we will look at  linear  
(straight-line) trends only.   

 If  we decide to develop a linear trend line by a precise statistical method, we can apply the 
 least-squares method . This approach results in a straight line that minimizes the sum of the 
squares of the vertical differences or deviations from the line to each of the actual observations. 
  Figure   4.4   illustrates the least-squares approach.  

 A least-squares line is described in terms of its  y -intercept (the height at which it intercepts 
the  y -axis) and its expected change (slope). If  we can compute the  y -intercept and slope, we can 
express the line with the following equation: 

    ny = a + bx   (4-11)   

   where  ny  (called “ y  hat”) =    computed value of the variable to be predicted (called the 
 dependent variable )  

   a  =   y -axis intercept  
   b  =    slope of the regression line (or the rate of change in  y  for given 

changes in  x )  
   x  =  the independent variable (which in this case is  time )   

 Statisticians have developed equations that we can use to find the values of  a  and  b  for any 
regression line. The slope  b  is found by: 

    b =
gxy - nx y
gx2 - nx2    (4-12)   

  Trend projection  

 A time-series forecasting method 

that fits a trend line to a series 

of historical data points and then 

projects the line into the future for 

forecasts. 
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   where  b =  slope of the regression line  
    g =  summation sign  

x  =  known values of the independent variable  
    y  =  known values of the dependent variable  
    x  =  average of the  x -values  

y  =  average of the  y -values  
n =  number of data points or observations   

 We can compute the  y -intercept  a  as follows: 

a = y - bx   (4-13)   

   Example   8   shows how to apply these concepts.  

    Example   8   FORECASTING WITH LEAST SQUARES   

 The demand for electric power at N.Y. Edison over the past 7 years is shown in the following table, in 
megawatts. The firm wants to forecast next year’s demand by fitting a straight-line trend to these data.   

YEAR
ELECTRICAL 

POWER DEMAND YEAR
ELECTRICAL 

POWER DEMAND

1 74 5 105
2 79 6 142
3 80 7 122
4 90

   APPROACH c       Equations   (4-12)   and   (4-13)   can be used to create the trend projection model.  

SOLUTION c      

YEAR ( x )
ELECTRIC POWER 

DEMAND ( y )  x  2  xy 

1 74 1 74
2 79 4 158
3 80 9 240
4 90 16 360
5 105 25 525
6 142 36 852
 7  122  49  854 

 gx = 28  gy = 692  gx2 = 140  gxy = 3,063 

    x =
gx
n

=
28
7

= 4 y =
gy
n

=
692
7

= 98.86

 b =
gxy - nx y
gx2 - nx2  =

3,063 - (7)(4)(98.86)
140 - (7)(42)

=
295
28

= 10.54

 a = y - bx = 98.86 - 10.54(4) = 56.70   

 Thus, the least-squares trend equation is  ny = 56.70 + 10.54x.  To project demand next year,  x  =  8: 

   Demand in year 8 = 56.70 + 10.54(8)
 = 141.02, or 141 megawatts    

   INSIGHT c     To evaluate the model, we plot both the historical demand and the trend line in 
  Figure   4.5  . In this case, we may wish to be cautious and try to understand the year 6 to year 7 swing in 
demand.   
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126 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

   Notes on the Use of the Least-Squares Method    Using the least-squares method 
implies that we have met three requirements: 

    1. We always plot the data because least-squares data assume a linear relationship. If a curve 
appears to be present, curvilinear analysis is probably needed.  

   2. We do not predict time periods far beyond our given database. For example, if we have 
20 months’ worth of average prices of Microsoft stock, we can forecast only 3 or 4 months 
into the future. Forecasts beyond that have little statistical validity. Thus, you cannot 
take 5 years’ worth of sales data and project 10 years into the future. The world is too 
uncertain.  

   3. Deviations around the least-squares line (see   Figure   4.4  ) are assumed to be random and 
normally distributed, with most observations close to the line and only a smaller number 
farther out.     

   Seasonal Variations in Data  
Seasonal variations  in data are regular movements in a time series that relate to recurring events 
such as weather or holidays. Demand for coal and fuel oil, for example, peaks during cold 
winter months. Demand for golf clubs or sunscreen may be highest in summer.      

 Seasonality may be applied to hourly, daily, weekly, monthly, or other recurring patterns. 
Fast-food restaurants experience  daily  surges at noon and again at 5 p.m. Movie theaters see 
higher demand on Friday and Saturday evenings. The post office, Toys “ R” Us, The Christ-
mas Store, and Hallmark Card Shops also exhibit seasonal variation in customer traffic 
and sales. 

 Similarly, understanding seasonal variations is important for capacity planning in organi-
zations that handle peak loads. These include electric power companies during extreme cold 
and warm periods, banks on Friday afternoons, and buses and subways during the morning 
and evening rush hours.    

  Seasonal variations  

 Regular upward or downward 

movements in a time series that 

tie to recurring events. 

   LEARNING EXERCISE c     Estimate demand for year 9. [Answer: 151.56, or 152 megawatts.]  

   RELATED PROBLEMS c     4.6, 4.13c, 4.16, 4.24, 4.30, 4.34 (4.39, 4.42 are available in MyOMLab) 

EXCEL OM Data File Ch04Ex8.xls can be found in MyOMLab.  

  ACTIVE MODEL 4.4 This example is further illustrated in Active Model 4.4 in MyOMLab.   

      Figure   4.5   

 Electrical Power and the 

Computed Trend Line    
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  STUDENT TIP    
 John Deere understands 

seasonal variations: It has been 

able to obtain 70% of its orders 

in advance of seasonal use so 

it can smooth production. 
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 Time-series forecasts like those in   Example   8   involve reviewing the trend of data over a 
series of time periods. The presence of seasonality makes adjustments in trend-line forecasts 
necessary. Seasonality is expressed in terms of the amount that actual values differ from aver-
age values in the time series. Analyzing data in monthly or quarterly terms usually makes it easy 
for a statistician to spot seasonal patterns. Seasonal indices can then be developed by several 
common methods. 

 In what is called a  multiplicative seasonal model , seasonal factors are multiplied by an esti-
mate of average demand to produce a seasonal forecast. Our assumption in this section is that 
trend has been removed from the data. Otherwise, the magnitude of the seasonal data will be 
distorted by the trend. 

 Here are the steps we will follow for a company that has “seasons” of 1 month: 

    1. Find the  average historical demand each season  (or month in this case) by summing the 
demand for that month in each year and dividing by the number of years of data avail-
able. For example, if, in January, we have seen sales of 8, 6, and 10 over the past 3 years, 
average January demand equals  (8 + 6 + 10)/3 = 8  units.  

   2. Compute the  average demand over all months  by dividing the total average annual 
demand by the number of seasons. For example, if the total average demand for a year is 
120 units and there are 12 seasons (each month), the average monthly demand is 
120/12 =  10 units.    

   3. Compute a  seasonal index  for each season by dividing that  month’s  historical average 
demand (from Step 1) by the average demand over all months (from Step 2). For example, 
if the average historical January demand over the past 3 years is 8 units and the aver-
age demand over all months is 10 units, the seasonal index for January is 8/10 =  .80. 
Likewise, a seasonal index of 1.20 for February would mean that February’s demand is 
20% larger than the average demand over all months.  

   4. Estimate next year’s total annual demand.  
   5. Divide this estimate of total annual demand by the number of seasons, then multiply it by 

the seasonal index for each month. This provides the  seasonal forecast .   

   Example   9   illustrates this procedure as it computes seasonal indices from historical data.  

  LO 4.5   Develop  

seasonal indices 

     Demand for many products 

is seasonal. Yamaha, the 

manufacturer of this jet ski and 

snowmobile, produces products 

with complementary demands to 

address seasonal fluctuations.  
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 A Des Moines distributor of Sony laptop computers wants to develop monthly indices for sales. Data 
from the past 3 years, by month, are available. 

   APPROACH c     Follow the five steps listed above.  

    Example   9   DETERMINING SEASONAL INDICES   
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128 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 For simplicity, only 3 periods (years) are used for each monthly index in the preceding exam-
ple.   Example   10   illustrates how indices that have already been prepared can be applied to 
adjust trend-line forecasts for seasonality. 

   SOLUTION c      

 DEMAND 

MONTH YEAR 1 YEAR 2 YEAR 3
AVERAGE PERIOD 

DEMAND
AVERAGE MONTHLY 

DEMAND    a    
SEASONAL 

INDEX    b    

Jan. 80 85 105 90 94  .957 ( = 90>94) 
Feb. 70 85 85 80 94  .851 ( = 80>94) 
Mar. 80 93 82 85 94  .904 ( = 85>94) 
Apr. 90 95 115 100 94  1.064 ( = 100>94) 
May 113 125 131 123 94  1.309 ( = 123>94) 
June 110 115 120 115 94  1.223 ( = 115>94) 
July 100 102 113 105 94  1.117 ( = 105>94) 
Aug. 88 102 110 100 94  1.064 ( = 100>94) 
Sept. 85 90 95 90 94  .957 ( = 90>94) 
Oct. 77 78 85 80 94  .851 ( = 80>94) 
Nov. 75 82 83 80 94  .851 ( = 80>94) 
Dec. 82 78 80  80 94  .851 ( = 80>94) 

Total average annual demand =  1,128

aAverage monthly demand =
1,128

12 months
 = 94. bSeasonal index =

Average monthly demand for past 3 years

Average monthly demand
.

 If we expect the annual demand for computers to be 1,200 units next year, we would use these seasonal 
indices to forecast the monthly demand as follows:   

MONTH DEMAND MONTH DEMAND

Jan.
 
1,200

12
* .957 = 96 

July
 
1,200

12
* 1.117 = 112 

Feb.
 
1,200

12
* .851 = 85 

Aug.
 
1,200

12
* 1.064 = 106 

Mar.
 
1,200

12
* .904 = 90 

Sept.
 
1,200

12
* .957 = 96 

Apr.
 
1,200

12
* 1.064 = 106 

Oct.
 
1,200

12
* .851 = 85 

May
 
1,200

12
* 1.309 = 131 

Nov.
 
1,200

12
* .851 = 85 

June
 
1,200

12
* 1.223 = 122 

Dec.
 
1,200

12
* .851 = 85 

   INSIGHT c     Think of these indices as percentages of average sales. The average sales (without seasonal-
ity) would be 94, but with seasonality, sales fluctuate from 85% to 131% of average.  

   LEARNING EXERCISE c     If next year’s annual demand is 1,150 laptops (instead of 1,200), what will 
the January, February, and March forecasts be? [Answer: 91.7, 81.5, and 86.6, which can be rounded to 
92, 82, and 87.]  

   RELATED PROBLEMS c     4.26, 4.27 (4.40, 4.41a are available in MyOMLab) 

  EXCEL OM Data File Ch04Ex9.xls can be found in MyOMLab.   

M04_HEIZ0422_12_SE_C04.indd   128M04_HEIZ0422_12_SE_C04.indd   128 14/12/15   9:53 am14/12/15   9:53 am



CHAPTER 4  | FORECASTING 129

    Example   10   APPLYING BOTH TREND AND SEASONAL INDICES   

 San Diego Hospital wants to improve its forecasting by applying both trend and seasonal indices to 
66 months of data it has collected. It will then forecast “patient-days” over the coming year. 

APPROACH c     A trend line is created; then monthly seasonal indices are computed. Finally, a multi-
plicative seasonal model is used to forecast months 67 to 78.  

   SOLUTION c     Using 66 months of adult inpatient hospital days, the following equation was computed: 

   ny = 8,090 + 21.5x   
 where 

ny = patient days
 x = time, in months   

 Based on this model, which reflects only trend data, the hospital forecasts patient days for the next 
month (period 67) to be: 

   Patient days = 8,090 + (21.5)(67) = 9,530 (trend only)   

 While this model, as plotted in   Figure   4.6  , recognized the upward trend line in the demand for inpatient 
services, it ignored the seasonality that the administration knew to be present. 
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      Figure   4.6   

 Trend Data for San Diego 

Hospital   

   Source:  From “Modern Methods Improve 

Hospital Forecasting” by W. E. Sterk and 

E. G. Shryock from  Healthcare Financial 

Management  41, no. 3, p.  97 . Reprinted 

by permission of Healthcare Financial 

Management Association.   

  The following table provides seasonal indices based on the same 66 months. Such seasonal data, by the 
way, were found to be typical of hospitals nationwide.   

    Seasonality Indices for Adult Inpatient Days at San Diego Hospital   

MONTH SEASONALITY INDEX MONTH SEASONALITY INDEX

January 1.04 July 1.03
February 0.97 August 1.04
March 1.02 September 0.97
April 1.01 October 1.00
May 0.99 November 0.96
June 0.99 December 0.98

 These seasonal indices are graphed in   Figure   4.7  . Note that January, March, July, and August seem 
to exhibit significantly higher patient days on average, while February, September, November, and 
December experience lower patient days. 

  However, neither the trend data nor the seasonal data alone provide a reasonable forecast for the 
hospital. Only when the hospital multiplied the trend-adjusted data by the appropriate seasonal index 
did it obtain good forecasts. Thus, for period 67 (January): 

Patient days = (Trend@adjusted forecast)(Monthly seasonal index) = (9,530)(1.04) = 9,911   
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130 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

    Example   11   further illustrates seasonality for quarterly data at a wholesaler. 

 The patient-days for each month are:   

 Period 67 68 69 70 71 72 73 74 75 76 77 78
 Month Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
 Forecast with 
Trend & 
Seasonality 

9,911 9,265 9,764 9,691 9,520 9,542 9,949 10,068 9,411 9,724 9,355 9,572

 A graph showing the forecast that combines both trend and seasonality appears in   Figure   4.8  .   

0.94

0.96

0.92

0.98

1.00

1.02

1.04

1.06

Month
(period = 67 for Jan. through 78 for Dec.)

In
de

x 
fo

r 
in

pa
tie

nt
 d

ay
s

1.01

1.04

0.97

1.02

0.99

0.99

1.03
1.04

0.97

1.00

0.98

Jan.
67

Feb.
68

Mar.
69

Apr.
70

May
71

June
72

July
73

Aug.
74

Sept.
75

Oct.
76

Dec.
78

Nov.
77

0.96

      Figure   4.7      

Seasonal Index for San Diego 
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      Figure   4.8      

Combined Trend and Seasonal 

Forecast    

   INSIGHT c     Notice that with trend only, the September forecast is 9,702, but with both trend and sea-
sonal adjustments, the forecast is 9,411. By combining trend and seasonal data, the hospital was better 
able to forecast inpatient days and the related staffing and budgeting vital to effective operations.  

   LEARNING EXERCISE c     If the slope of the trend line for patient-days is 22.0 (rather than 21.5) and 
the index for December is .99 (instead of .98), what is the new forecast for December inpatient days? 
[Answer: 9,708.]  

   RELATED PROBLEMS c     4.25, 4.28  

 Management at Jagoda Wholesalers, in Calgary, Canada, has used time-series regression based on point-
of-sale data to forecast sales for the next 4 quarters. Sales estimates are $100,000, $120,000, $140,000, 
and $160,000 for the respective quarters. Seasonal indices for the four quarters have been found to be 
1.30, .90, .70, and 1.10, respectively. 

     Example   11   ADJUSTING TREND DATA WITH SEASONAL INDICES   
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   Cyclical Variations in Data  
Cycles  are like seasonal variations in data but occur every several  years , not weeks, months, or 
quarters. Forecasting cyclical variations in a time series is difficult. This is because cycles include 
a wide variety of factors that cause the economy to go from recession to expansion to recession 
over a period of years. These factors include national or industrywide overexpansion in times of 
euphoria and contraction in times of concern. Forecasting demand for individual products can 
also be driven by product life cycles—the stages products go through from introduction through 
decline. Life cycles exist for virtually all products; striking examples include floppy disks, video 
recorders, and the original Game Boy. We leave cyclical analysis to forecasting texts.   

 Developing associative techniques of variables that affect one another is our next topic.   

   Associative Forecasting Methods: 
Regression and Correlation Analysis    
 Unlike time-series forecasting,  associative forecasting  models usually consider  several  variables 
that are related to the quantity being predicted. Once these related variables have been found, 
a statistical model is built and used to forecast the item of interest. This approach is more pow-
erful than the time-series methods that use only the historical values for the forecast variable. 

 Many factors can be considered in an associative analysis. For example, the sales of Dell 
PCs may be related to Dell’s advertising budget, the company’s prices, competitors’ prices 
and promotional strategies, and even the nation’s economy and unemployment rates. In this 
case, PC sales would be called the  dependent variable , and the other variables would be called 
independent variables . The manager’s job is to develop  the best statistical relationship between 
PC sales and the independent variables . The most common quantitative associative forecasting 
model is  linear-regression analysis .   

   Using Regression Analysis for Forecasting  
 We can use the same mathematical model that we employed in the least-squares method of 
trend projection to perform a linear-regression analysis. The dependent variables that we want 
to forecast will still be  ny . But now the independent variable,  x , need no longer be time. We use 
the equation: 
    ny = a + bx   

   where   ny =  value of the dependent variable (in our example, sales)  
     a =   y -axis intercept  
     b =  slope of the regression line  
     x =  independent variable     

   Example   12   shows how to use linear regression. 

  Cycles  

 Patterns in the data that occur 

every several years. 

STUDENT TIP    
 We now deal with the same 

mathematical model that we 

saw earlier, the least-squares 

method. But we use any 

potential “cause-and-effect” 

variable as  x . 

  Linear-regression analysis  

 A straight-line mathematical 

model to describe the functional 

relationships between independent 

and dependent variables. 

  LO 4.6   Conduct  a 

regression and correlation 

analysis 

   APPROACH c     To compute a seasonalized or adjusted sales forecast, we just multiply each seasonal 
index by the appropriate trend forecast: 

   nyseasonal = Index * nytrend forecast    

   SOLUTION c     Quarter I:  nyI = (1.30)(+100,000) = +130,000
Quarter II:  nyII = (.90)(+120,000) = +108,000
Quarter III: nyIII = (.70)(+140,000) = +98,000
Quarter IV: nyIV = (1.10)(+160,000) = +176,000    

   INSIGHT c     The straight-line trend forecast is now adjusted to reflect the seasonal changes.  

   LEARNING EXERCISE c     If the sales forecast for Quarter IV was $180,000 (rather than $160,000), 
what would be the seasonally adjusted forecast? [Answer: $198,000.]  

   RELATED PROBLEMS c     4.25, 4.28 (4.41b is available in MyOMLab)    
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132 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 Nodel Construction Company renovates old homes in West Bloomfield, Michigan. Over time, the com-
pany has found that its dollar volume of renovation work is dependent on the West Bloomfield area 
payroll. Management wants to establish a mathematical relationship to help predict sales. 

   APPROACH c     Nodel’s VP of operations has prepared the following table, which lists company rev-
enues and the amount of money earned by wage earners in West Bloomfield during the past 6 years:   

NODEL’S SALES 
(IN $ MILLIONS),  y 

AREA PAYROLL 
(IN $ BILLIONS),  x 

NODEL’S SALES 
(IN $ MILLIONS),  y 

AREA PAYROLL 
(IN $ BILLIONS),  x 

2.0 1 2.0 2

3.0 3 2.0 1

2.5 4 3.5 7

 The VP needs to determine whether there is a straight-line (linear) relationship between area payroll and 
sales. He plots the known data on a scatter diagram:       

     Example   12   COMPUTING A LINEAR REGRESSION EQUATION   

  STUDENT TIP    
 A scatter diagram is a powerful 

data analysis tool. It helps 

quickly size up the relationship 

between two variables. 

Area payroll (in $ billions)
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 From the six data points, there appears to be a slight positive relationship between the independent 
variable (payroll) and the dependent variable (sales): As payroll increases, Nodel’s sales tend to be 
higher.  

   SOLUTION c     We can find a mathematical equation by using the least-squares regression approach:      

SALES,  y PAYROLL,  x  x  2  xy 

2.0 1 1 2.0
3.0 3 9 9.0
2.5 4 16 10.0
2.0 2 4 4.0
2.0 1 1 2.0

  3.5    7  49  24.5 

 g   y  =  15.0  g   x  =  18  g   x  2  =  80  g   xy  =  51.5

    x =
gx
6

=
18
6

= 3

 y =
gy
6

=
15
6

= 2.5

 b =
gxy - nx y
gx2 - nx2 =

51.5 - (6)(3)(2.5)
80 - (6)(32)

= .25

a = y - bx = 2.5 - (.25)(3) = 1.75   

 The estimated regression equation, therefore, is: 

   ny = 1.75 + .25x   
 or: 

   Sales = 1.75 + .25 (payroll)   

  VIDEO 4.1  
 Forecasting Ticket Revenue for 

Orlando Magic Basketball Games 
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 If the local chamber of commerce predicts that the West Bloomfield area payroll will be $6 billion next 
year, we can estimate sales for Nodel with the regression equation: 

 Sales (in + millions) = 1.75 + .25(6)
 = 1.75 + 1.50 = 3.25   

 or: 

 Sales = +3,250,000     

   INSIGHT c     Given our assumptions of a straight-line relationship between payroll and sales, we now 
have an indication of the slope of that relationship: on average, sales increase at the rate of 14 million dol-
lars for every billion dollars in the local area payroll. This is because  b =  .25.  

   LEARNING EXERCISE c     What are Nodel’s sales when the local payroll is $8 billion? [Answer: 
$3.75 million.]  

   RELATED PROBLEMS c     4.34, 4.43–4.48, 4.50–4.54 (4.56a, 4.57, 4.58 are available in MyOMLab) 

  EXCEL OM Data File Ch04Ex12.xls can be found in MyOMLab.    

 The final part of   Example   12   shows a central weakness of associative forecasting methods like 
regression. Even when we have computed a regression equation, we must provide a forecast 
of the independent variable  x —in this case, payroll—before estimating the dependent variable 
 y  for the next time period. Although this is not a problem for all forecasts, you can imagine 
the difficulty of determining future values of  some  common independent variables (e.g., unem-
ployment rates, gross national product, price indices, and so on).  

   Standard Error of the Estimate  
 The forecast of $3,250,000 for Nodel’s sales in   Example   12   is called a  point estimate  of  y . The 
point estimate is really the  mean , or  expected value , of a distribution of possible values of sales. 
  Figure   4.9   illustrates this concept.  

 To measure the accuracy of the regression estimates, we must compute the  standard error of 

the estimate ,  Sy, x . This computation is called the  standard deviation of the regression:  It mea-
sures the error from the dependent variable,  y , to the regression line, rather than to the mean. 
  Equation   (4-14)   is a similar expression to that found in most statistics books for computing the 
standard deviation of an arithmetic mean:   

    Sy, x =
B

g ( y - yc)2

n - 2
   (4-14)   

   where   y =   y -value of each data point  
     yc =  computed value of the dependent variable, from the regression equation  
     n =  number of data points     

  Standard error of the estimate  

 A measure of variability around 

the regression line—its standard 

deviation. 
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Regression line,
y = 1.75 + .25x

x

y       Figure   4.9   

 Distribution about the Point 

Estimate of $3.25 Million Sales    
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134 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

    Equation   (4-15)   may look more complex, but it is actually an easier-to-use version of   Equation  
 (4-14)  . Both formulas provide the same answer and can be used in setting up prediction inter-
vals around the point estimate:   2    

Sy,x =
B

gy2 - agy - bgxy
n - 2

   (4-15)   

   Example   13   shows how we would calculate the standard error of the estimate in   Example   12  . 

     Glidden Paints’ assembly lines require thousands of gallons every hour. 

To predict demand, the firm uses associative forecasting methods such 

as linear regression, with independent variables such as disposable 

personal income and GNP. Although housing starts would be a natural 

variable, Glidden found that it correlated poorly with past sales. It turns 

out that most Glidden paint is sold through retailers to customers who 

already own homes or businesses.  
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 Nodel’s VP of operations now wants to know the error associated with the regression line computed in 
  Example   12  . 

   APPROACH c     Compute the standard error of the estimate,  S   y , x  , using   Equation   (4-15)  .  

   SOLUTION c     The only number we need that is not available to solve for  S   y , x   is  gy2.  Some quick addi-
tion reveals  gy2 = 39.5.  Therefore: 

   Sy,x =
B

gy2 - agy - bgxy
n - 2

=
B

39.5 - 1.75(15.0) - .25(51.5)
6 - 2

= 2.09375 = .306 (in $ millions)   

 The standard error of the estimate is then $306,000 in sales.  

   INSIGHT c     The interpretation of the standard error of the estimate is similar to the standard devia-
tion; namely,  {1  standard deviation = .6827. So there is a 68.27% chance of sales being  {  $306,000 from 
the point estimate of $3,250,000.  

   LEARNING EXERCISE c     What is the probability sales will exceed $3,556,000? [Answer: About 16%.]  

   RELATED PROBLEMS c     4.52e, 4.54b (4.56c, 4.57 are available in MyOMLab)    

     Example   13   COMPUTING THE STANDARD ERROR OF THE ESTIMATE   

   Correlation Coefficients for Regression Lines  
 The regression equation is one way of expressing the nature of the relationship between two 
variables. Regression lines are not “cause-and-effect” relationships. They merely describe the 
relationships among variables. The regression equation shows how one variable relates to the 
value and changes in another variable. 

 Another way to evaluate the relationship between two variables is to compute the  coefficient 

of correlation . This measure expresses the degree or strength of the linear relationship (but note 

  Coefficient of correlation  

 A measure of the strength of 

the relationship between two 

variables. 
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that correlation does not necessarily imply causality). Usually identified as  r , the coefficient of 
correlation can be any number between  +1  and  -1 .   Figure   4.10   illustrates what different values 
of  r  might look like.    

 To compute  r , we use much of the same data needed earlier to calculate  a  and  b  for the 
regression line. The rather lengthy equation for  r  is: 

r =
ngxy - gxgy

2[ngx2 - (gx)2][ngy2 - (gy)2]
   (4-16)   

   Example   14   shows how to calculate the coefficient of correlation for the data given in   Examples  
 12   and   13  . 

(e) Perfect positive
      correlation: r = 1 

x

y

(a) Perfect negative
      correlation: r = –1 

x

y

(b) Negative correlation

High

–1.0 –0.8 –0.6 –0.4 –0.2 0
Correlation coefficient values

0.2 0.4 0.6 0.8 1.0

HighModerate ModerateLow Low

x

y

(c) No correlation:
     r = 0

x

y

(d) Positive correlation 
x

y

      Figure   4.10      

Five Values of the Correlation 

Coefficient    

 In   Example   12  , we looked at the relationship between Nodel Construction Company’s renovation sales 
and payroll in its hometown of West Bloomfield. The VP now wants to know the strength of the associa-
tion between area payroll and sales. 

   APPROACH c     We compute the  r  value using   Equation   (4-16)  . We need to first add one more column 
of calculations—for  y  2 .  

   SOLUTION c     The data, including the column for  y  2  and the calculations, are shown here:   

 y  x  x  2  xy  y  2 

2.0 1 1 2.0 4.0
3.0 3 9 9.0 9.0
2.5 4 16 10.0 6.25
2.0 2 4 4.0 4.0
2.0 1 1 2.0 4.0

  3.5   7  49  24.5  12.25 

 g   y  =  15.0  g   x  =  18  g   x  2  =  80  g   xy  =  51.5  g   y  2  =  39.5

     Example   14   DETERMINING THE COEFFICIENT OF CORRELATION   
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136 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 Although the coefficient of correlation is the measure most commonly used to describe 
the relationship between two variables, another measure does exist. It is called the  coefficient of 

determination  and is simply the square of the coefficient of correlation—namely,  r  2 . The value 
of  r  2  will always be a positive number in the range  0 … r2 … 1.  The coefficient of determina-
tion is the percent of variation in the dependent variable ( y ) that is explained by the regression 
equation. In Nodel’s case, the value of  r  2  is .81, indicating that 81% of the total variation is 
explained by the regression equation.    

   Multiple-Regression Analysis  
Multiple regression  is a practical extension of the simple regression model we just explored. It 
allows us to build a model with several independent variables instead of just one variable. For 
example, if Nodel Construction wanted to include average annual interest rates in its model 
for forecasting renovation sales, the proper equation would be:   

ny = a + b1x1 + b2x2   (4-17)   

   where  y =  dependent variable, sales  
a =  a constant, the  y  intercept  

x  1  and  x  2  =    values of the two independent variables, area payroll and interest rates, 
respectively  

b1  and  b  2  =  coefficients for the two independent variables   

 The mathematics of multiple regression becomes quite complex (and is usually tackled by com-
puter), so we leave the formulas for  a ,  b  1 , and  b  2  to statistics textbooks. However,   Example   15   
shows how to interpret   Equation   (4-17)   in forecasting Nodel’s sales. 

  Coefficient of determination  

 A measure of the amount of 

variation in the dependent variable 

about its mean that is explained by 

the regression equation. 

  Multiple regression  

 An associative forecasting method 

with more than one independent 

variable. 

   r =
(6)(51.5) - (18)(15.0)

2[(6)(80) - (18)2][(6)(39.5) - (15.0)2]

=
309 - 270

2(156)(12)
=

39

21,872

=
39

43.3
= .901    

   INSIGHT c     This  r  of .901 appears to be a significant correlation and helps confirm the closeness of the 
relationship between the two variables.  

   LEARNING EXERCISE c     If the coefficient of correlation was  - .901  rather than  + .901 , what would 
this tell you? [Answer: The negative correlation would tell you that as payroll went up, Nodel’s sales went 
down—a rather unlikely occurrence that would suggest you recheck your math.]  

   RELATED PROBLEMS c     4.43d, 4.48d, 4.50c, 4.52f, 4.54b (4.56b, 4.57 are available in MyOMLab)   

 Nodel Construction wants to see the impact of a second independent variable, interest rates, on its sales. 

   APPROACH c     The new multiple-regression line for Nodel Construction, calculated by computer soft-
ware, is: 

   ny = 1.80 + .30x1 - 5.0x2   

 We also find that the new coefficient of correlation is .96, implying the inclusion of the variable  x  2 , inter-
est rates, adds even more strength to the linear relationship.  

     Example   15   USING A MULTIPLE-REGRESSION EQUATION   
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   SOLUTION c     We can now estimate Nodel’s sales if we substitute values for next year’s payroll and 
interest rate. If West Bloomfield’s payroll will be $6 billion and the interest rate will be .12 (12%), sales 
will be forecast as: 

    Sales($ millions) = 1.80 + .30(6) - 5.0(.12)
 = 1.8 + 1.8 - .6
 = 3.00    

 or: 

    Sales = $3,000,000     

   INSIGHT c     By using both variables, payroll and interest rates, Nodel now has a sales forecast of 
$3 million and a higher coefficient of correlation. This suggests a stronger relationship between the two 
variables and a more accurate estimate of sales.  

   LEARNING EXERCISE c     If interest rates were only 6%, what would be the sales forecast? [Answer: 
 1.8 + 1.8 - 5.0(.06) = 3.3,  or $3,300,000.]  

   RELATED PROBLEMS c     4.47, 4.49 (4.59 is available in MyOMLab)  

 NYC’s Potholes and Regression Analysis   

 New York is famous for many things, but one it does not like to be known for 

is its large and numerous potholes. David Letterman used to joke: “There is a 

pothole so big on 8th Avenue, it has its own Starbucks in it.” When it comes to 

potholes, some years seem to be worse than others. The winter of 2014 was 

an exceptionally bad year. City workers filled a record 300,000 potholes during 

the first 4 months of the year. That’s an astounding accomplishment. 

 But potholes are to some extent a measure of municipal competence—and 

they are costly. NYC’s poor streets cost the average motorist an estimated 

$800 per year in repair work and new tires. There has been a steady and 

dramatic increase in potholes from around 70,000–80,000 in the 1990s to the 

devastatingly high 200,000–300,000 range in recent years. One theory is that 

bad weather causes the potholes. Using inches of snowfall as a measure of the 

severity of the winter, the graph below shows a plot of the number of potholes 

versus the inches of snow each winter.    

   OM in Action 
Any amount below that would contribute to a “gap” or backlog of streets need-

ing repair. The graph below shows the plot of potholes versus the gap. With an 

 r   2  of .81, there is a very strong relationship between the increase in the “gap” 

and the number of potholes. It is obvious that the real reason for the steady 

and substantial increase in the number of potholes is due to the increasing gap 

in road resurfacing.    
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 A third model performs a regression analysis using the resurfacing gap and 

inches of snow as two independent variables and number of potholes as the 

dependent variable. That regression model’s  r   2  is .91. 

   Potholes = 7,801.5 + 80.6 * Resurfacing gap

           + 930.1 * Inches of snow   

  Sources:  OR/MS Today  (June, 2014) and  New York Daily News  (March 5, 2014).  

 Research showed that the city would need to resurface at least 

1,000 miles of roads per year just to stay even with road deterioration. 

The OM in Action box, “NYC’s Potholes and Regression Analysis,” provides an interesting example 
of one city’s use of regression and multiple regression.   
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138 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

      Monitoring and Controlling Forecasts  
 Once a forecast has been completed, it should not be forgotten. No manager wants to be 
reminded that his or her forecast is horribly inaccurate, but a firm needs to determine why 
actual demand (or whatever variable is being examined) differed significantly from that pro-
jected. If the forecaster is accurate, that individual usually makes sure that everyone is aware 
of his or her talents. Very seldom does one read articles in  Fortune ,  Forbes , or  The Wall Street 
Journal , however, about money managers who are consistently off by 25% in their stock mar-
ket forecasts. 

 One way to monitor forecasts to ensure that they are performing well is to use a tracking 
signal. A  tracking signal  is a measurement of how well a forecast is predicting actual values. As 
forecasts are updated every week, month, or quarter, the newly available demand data are com-
pared to the forecast values.   

 The tracking signal is computed as the cumulative error divided by the  mean absolute devia-
tion (MAD) : 

     Tracking signal =
Cumulative error

MAD

  =
g (Actual demand in period i - Forecast demand in period i)

MAD
   

(4-18)

   

 where  MAD =
g � Actual-Forecast �

n   

 as seen earlier, in   Equation   (4-5)  .    
  Positive  tracking signals indicate that demand is  greater  than forecast.  Negative  signals 

mean that demand is  less  than forecast. A good tracking signal—that is, one with a low cumu-
lative error—has about as much positive error as it has negative error. In other words, small 
deviations are okay, but positive and negative errors should balance one another so that the 
tracking signal centers closely around zero. A consistent tendency for forecasts to be greater 
or less than the actual values (that is, for a high absolute cumulative error) is called a  bias  error. 
Bias can occur if, for example, the wrong variables or trend line are used or if  a seasonal index 
is misapplied.   

 Once tracking signals are calculated, they are compared with predetermined control limits. 
When a tracking signal exceeds an upper or lower limit, there is a problem with the forecasting 
method, and management may want to reevaluate the way it forecasts demand.   Figure   4.11   
shows the graph of a tracking signal that is exceeding the range of acceptable variation. If  
the model being used is exponential smoothing, perhaps the smoothing constant needs to be 
readjusted.  

 How do firms decide what the upper and lower tracking limits should be? There is no 
single answer, but they try to find reasonable values—in other words, limits not so low as 
to be triggered with every small forecast error and not so high as to allow bad forecasts to 
be regularly overlooked. One MAD is equivalent to approximately .8 standard deviations, 

  Tracking signal  

 A measurement of how well 

a forecast is predicting actual 

values. 

  Bias  

 A forecast that is consistently 

higher or consistently lower than 

actual values of a time series. 

  LO 4.7   Use  a tracking 

signal 

  STUDENT TIP    
 Using a tracking signal is a good way 

to make sure the forecasting system 

is continuing to do a good job. 

+

–

0 MADs

Upper control limit

Lower control limit

Time 

Signal exceeded limit

Tracking signal

Acceptable range

*

      Figure   4.11     

A Plot of Tracking Signals    
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{  2 MADs = {  1.6 standard deviations,  {  3 MADs = {  2.4 standard deviations, and  {  4 
MADs = {  3.2 standard deviations. This fact suggests that for a forecast to be “in control,” 
89% of the errors are expected to fall within  {  2 MADs, 98% within  {  3 MADs, or 99.9% 
within  {  4 MADs.   3      

   Example   16   shows how the tracking signal and cumulative error can be computed. 

 Carlson’s Bakery wants to evaluate performance of its croissant forecast. 

   APPROACH c     Develop a tracking signal for the forecast, and see if it stays within acceptable limits, 
which we define as  {  4 MADs.  

   SOLUTION c     Using the forecast and demand data for the past 6 quarters for croissant sales, we 
develop a tracking signal in the following table:   

QUARTER
ACTUAL 
DEMAND

FORECAST 
DEMAND ERROR

CUMULATIVE 
ERROR

ABSOLUTE 
FORECAST 

ERROR

CUMULATIVE 
ABSOLUTE 
FORECAST 

ERROR MAD

TRACKING 
SIGNAL 

(CUMULATIVE 
ERROR/MAD)

1  90 100 210 210 10 10 10.0 210/10 5 21
2  95 100 25 215 5 15 7.5 215/7.5 5 22
3 115 100 115 0 15 30 10.0 0/10 5 0
4 100 110 210 210 10 40 10.0 210/10 5 21
5 125 110 115 15 15 55 11.0 15/11 5 10.5
6 140 110 130 135 30 85 14.2 135/14.2 5 12.5

   At the end of quarter 6, MAD =
g � Forecast errors �

n
 =

85
6

 = 14.2

and Tracking signal =
Cumulative error

MAD
 =

35
14.2

 = 2.5 MADs    

   INSIGHT c     Because the tracking signal drifted from  -  2 MAD to  +  2.5 MAD (between 1.6 and 2.0 
standard deviations), we can conclude that it is within acceptable limits.  

   LEARNING EXERCISE c     If actual demand in quarter 6 was 130 (rather than 140), what would be the 
MAD and resulting tracking signal? [Answer: MAD for quarter 6 would be 12.5, and the tracking signal 
for period 6 would be 2 MADs.]  

   RELATED PROBLEMS c     4.59, 4.60 (4.61c is available in MyOMLab)   

     Example   16   COMPUTING THE TRACKING SIGNAL AT CARLSON’S BAKERY   

   Adaptive Smoothing  
Adaptive forecasting  refers to computer monitoring of tracking signals and self-adjustment if 
a signal passes a preset limit. For example, when applied to exponential smoothing, the  a  and 
b  coefficients are first selected on the basis of values that minimize error forecasts and then 
adjusted accordingly whenever the computer notes an errant tracking signal. This process is 
called  adaptive smoothing .    

   Focus Forecasting  
 Rather than adapt by choosing a smoothing constant, computers allow us to try a variety of 
forecasting models. Such an approach is called focus forecasting.  Focus forecasting  is based on 
two principles:   

    1. Sophisticated forecasting models are not always better than simple ones.  
   2. There is no single technique that should be used for all products or services.   

  Adaptive smoothing  

 An approach to exponential 

smoothing forecasting in which the 

smoothing constant is automati-

cally changed to keep errors to a 

minimum. 

  Focus forecasting  

 Forecasting that tries a variety of 

computer models and selects the 

best one for a particular 

application. 
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140 PART 1 | INTRODUCTION TO OPERATIONS MANAGEMENT

 Bernard Smith, inventory manager for American Hardware Supply, coined the term  focus 
forecasting . Smith’s job was to forecast quantities for 100,000 hardware products pur-
chased by American’s 21 buyers.   4    He found that buyers neither trusted nor understood 
the exponential smoothing model then in use. Instead, they used very simple approaches 
of their own. So Smith developed his new computerized system for selecting forecasting 
methods. 

 Smith chose to test seven forecasting methods. They ranged from the simple ones that buy-
ers used (such as the naive approach) to statistical models. Every month, Smith applied the 
forecasts of all seven models to each item in stock. In these simulated trials, the forecast values 
were subtracted from the most recent actual demands, giving a simulated forecast error. The 
forecast method yielding the least error is selected by the computer, which then uses it to make 
next month’s forecast. Although buyers still have an override capability, American Hardware 
finds that focus forecasting provides excellent results.   

   Forecasting in the Service Sector  
 Forecasting in the service sector presents some unusual challenges. A major technique in the 
retail sector is tracking demand by maintaining good short-term records. For instance, a bar-
bershop catering to men expects peak flows on Fridays and Saturdays. Indeed, most barber-
shops are closed on Sunday and Monday, and many call in extra help on Friday and Saturday. 
A downtown restaurant, on the other hand, may need to track conventions and holidays for 
effective short-term forecasting.   

    Specialty Retail Shops    Specialty retail facilities, such as flower shops, may have other 
unusual demand patterns, and those patterns will differ depending on the holiday. When Val-
entine’s Day falls on a weekend, for example, flowers can’t be delivered to offices, and those 
romantically inclined are likely to celebrate with outings rather than flowers. If a holiday falls 
on a Monday, some of the celebration may also take place on the weekend, reducing flower 
sales. However, when Valentine’s Day falls in midweek, busy midweek schedules often make 
flowers the optimal way to celebrate. Because flowers for Mother’s Day are to be delivered on 
Saturday or Sunday, this holiday forecast varies less. Due to special demand patterns, many 
service firms maintain records of sales, noting not only the day of the week but also unusual 
events, including the weather, so that patterns and correlations that influence demand can 
be developed.    

   Fast-Food Restaurants    Fast-food restaurants are well aware not only of weekly, daily, 
and hourly but even 15-minute variations in demands that influence sales. Therefore, detailed 
forecasts of demand are needed.   Figure   4.12(a)   shows the hourly forecast for a typical fast-
food restaurant. Note the lunchtime and dinnertime peaks. This contrasts to the mid-morning 
and mid-afternoon peaks at FedEx’s call center in   Figure   4.12(b)  .  

 Firms like Taco Bell now use point-of-sale computers that track sales every quarter 
hour. Taco Bell found that a 6-week moving average was the forecasting technique that 
minimized its mean squared error (MSE) of  these quarter-hour forecasts. Building this 
forecasting methodology into each of  Taco Bell’s 6,500 U.S. stores’ computers, the model 
makes weekly projections of  customer transactions. These in turn are used by store man-
agers to schedule staff, who begin in 15-minute increments, not 1-hour blocks as in other 
industries. The forecasting model has been so successful that Taco Bell has increased cus-
tomer service while documenting more than $50 million in labor cost savings in 4 years 
of  use.     

  STUDENT TIP    
 Forecasting at McDonald’s, 

FedEx, and Walmart is as 

important and complex as it 

is for manufacturers such as 

Toyota and Dell. 

  VIDEO 4.2  
 Forecasting at Hard Rock Cafe 
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      Figure   4.12      

Forecasts Are Unique: Note the Variations between (a) Hourly Sales at a Fast-Food Restaurant and (b) Hourly Call Volume at FedEx   

   * Based on historical data: see  Journal of Business Forecasting  (Winter 1999–2000): 6–11.   

    Summary  
 Forecasts are a critical part of  the operations manager’s 
function. Demand forecasts drive a firm’s production, 
capacity, and scheduling systems and affect the financial, 
marketing, and personnel planning functions. 

 There are a variety of qualitative and quantitative fore-
casting techniques. Qualitative approaches employ judg-
ment, experience, intuition, and a host of other factors 
that are difficult to quantify. Quantitative forecasting uses 
historical data and causal, or associative, relations to pro-
ject future demands. The Rapid Review for this chapter 

summarizes the formulas we introduced in quantitative 
forecasting. Forecast calculations are seldom performed 
by hand. Most operations managers turn to software 
packages such as Forecast PRO, NCSS, Minitab, Systat, 
Statgraphics, SAS, or SPSS. 

 No forecasting method is perfect under all conditions. 
And even once management has found a satisfactory 
approach, it must still monitor and control forecasts to make 
sure errors do not get out of hand. Forecasting can often be 
a very challenging, but rewarding, part of managing.  

   Key Terms   

  Forecasting    (p.  108 ) 
  Economic forecasts    (p.  109 ) 
  Technological forecasts    (p.  109 ) 
  Demand forecasts    (p.  109 ) 
  Quantitative forecasts    (p.  111 ) 
  Qualitative forecasts    (p.  111 ) 
  Jury of executive opinion    (p.  111 ) 
  Delphi method    (p.  111 ) 
  Sales force composite    (p.  111 ) 
  Market survey    (p.  111 ) 

  Time series    (p.  112 ) 
  Naive approach    (p.  114 ) 
  Moving averages    (p.  114 ) 
  Exponential smoothing    (p.  116 ) 
  Smoothing constant    (p.  116 ) 
  Mean absolute deviation (MAD)    (p.  118 ) 
  Mean squared error (MSE)    (p.  119 ) 
  Mean absolute percent error (MAPE)    (p.  120 ) 
  Trend projection    (p.  124 ) 
  Seasonal variations    (p.  126 ) 

  Cycles    (p.  131 ) 
  Linear-regression analysis    (p.  131 ) 
  Standard error of the estimate    (p.  133 ) 
  Coefficient of correlation    (p.  134 ) 
  Coefficient of determination    (p.  136 ) 
  Multiple regression    (p.  136 ) 
  Tracking signal    (p.  138 ) 
  Bias    (p.  138 ) 
  Adaptive smoothing    (p.  139 ) 
  Focus forecasting    (p.  139 )   

   Ethical Dilemma  
 We live in a society obsessed with test scores and maximum 
performance. Think of the SAT, ACT, GRE, GMAT, and LSAT. 
Though they take only a few hours, they are supposed to give 
schools and companies a snapshot of a student’s abiding talents. 

 But these tests are often spectacularly bad at forecasting 
performance in the real world. The SAT does a decent job ( r  2  = 
.12) of predicting the grades of a college freshman. It is, however, 
less effective at predicting achievement  after  graduation. 

LSAT scores bear virtually no 
correlation to career success 
as measured by income, life 
satisfaction, or public service. 

 What does the  r  2  mean in 
this context? Is it ethical for 
colleges to base admissions and 
fi nancial aid decisions on scores 
alone? What role do these tests take at your own school?     
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1. What is a qualitative forecasting model, and when is its use 
appropriate?   

2. Identify and briefly describe the two general forecasting 
approaches.   

3. Identify the three forecasting time horizons. State an approx-
imate duration for each.   

4. Briefly describe the steps that are used to develop a forecast-
ing system.   

5. A skeptical manager asks what medium-range forecasts can 
be used for. Give the manager three possible uses/purposes.   

6. Explain why such forecasting devices as moving averages, 
weighted moving averages, and exponential smoothing are 
not well suited for data series that have trends.   

7. What is the basic difference between a weighted moving aver-
age and exponential smoothing?   

8. What three methods are used to determine the accuracy of 
any given forecasting method? How would you determine 
whether time-series regression or exponential smoothing is 
better in a specific application?   

9. Research and briefly describe the Delphi technique. How 
would it be used by an employer you have worked for?   

10. What is the primary difference between a time-series model 
and an associative model?   

11. Define  time series .   
12. What effect does the value of the smoothing constant have on 

the weight given to the recent values?   
13. Explain the value of seasonal indices in forecasting. How are 

seasonal patterns different from cyclical patterns?   
14. Which forecasting technique can place the most emphasis on 

recent values? How does it do this?   
15. In your own words, explain adaptive forecasting.   
16. What is the purpose of a tracking signal?   
17. Explain, in your own words, the meaning of the correlation 

coefficient. Discuss the meaning of a negative value of the 
correlation coefficient.   

18. What is the difference between a dependent and an independ-
ent variable?   

19. Give examples of industries that are affected by seasonality. 
Why would these businesses want to filter out seasonality?   

20. Give examples of industries in which demand forecasting is 
dependent on the demand for other products.   

21. What happens to the ability to forecast for periods farther 
into the future?   

22. CEO John Goodale, at Southern Illinois Power and Light, 
has been collecting data on demand for electric power in its 
western subregion for only the past 2 years. Those data are 
shown in the table below. 

    To plan for expansion and to arrange to borrow power 
from neighboring utilities during peak periods, Goodale 
needs to be able to forecast demand for each month next 
year. However, the standard forecasting models discussed in 
this chapter will not fit the data observed for the 2 years. 

     a)  What are the weaknesses of the standard forecasting tech-
niques as applied to this set of data?  

    b)  Because known models are not appropriate here, propose 
your own approach to forecasting. Although there is no 
perfect solution to tackling data such as these (in other 
words, there are no 100% right or wrong answers), justify 
your model.  

    c)  Forecast demand for each month next year using the 
model you propose.     

 DEMAND IN MEGAWATTS 

MONTH LAST YEAR THIS YEAR

January  5 17

February  6 14

March 10 20

April 13 23

May 18 30

June 15 38

July 23 44

August 26 41

September 21 33

October 15 23

November 12 26

December 14 17

   Discussion Questions  

   Using Software in Forecasting  

 This section presents three ways to solve forecasting problems with computer software. First, you can create your own Excel 
spreadsheets to develop forecasts. Second, you can use the Excel OM software that comes with the text. Third, POM for Windows 
is another program that is located in MyOMLab  . 

   CREATING YOUR OWN EXCEL SPREADSHEETS  
 Excel spreadsheets (and spreadsheets in general) are frequently used in forecasting. Exponential smoothing, trend analysis, and 
regression analysis (simple and multiple) are supported by built-in Excel functions. 

   Program   4.1   illustrates how to build an Excel forecast for the data in   Example   8  . The goal for N.Y. Edison is to create a trend 
analysis of the year 1 to year 7 data.  

 As an alternative, you may want to experiment with Excel’s built-in regression analysis. To do so, under the  Data  menu bar selec-
tion choose  Data Analysis , then  Regression . Enter your  Y  and  X  data into two columns (say A and B). When the regression window 
appears, enter the  Y  and  X  ranges, then select  OK . Excel offers several plots and tables to those interested in more rigorous analysis 
of regression problems.  
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     X  USING EXCEL OM  
 Excel OM’s forecasting module has five components: (1) moving averages, (2) weighted moving averages, (3) exponential smooth-
ing, (4) regression (with one variable only), and (5) decomposition. Excel OM’s error analysis is much more complete than that 
available with the Excel add-in. 

   Program   4.2   illustrates Excel OM’s input and output, using   Example   2  ’s weighted-moving-average data.   

=B$16+A5*B$17

=INTERCEPT(B5:B11,A5:A11)

=SLOPE(B5:B11,A5:A11)

=STEYX(B5:B11,A5:A11)

=CORREL(B5:B11,A5:A11)

Actions
Copy C5 to C6:C13

To create the graph, select A5:C13 and choose
Insert Line Chart

      Program   4.1     

Using Excel to Develop Your Own Forecast, with Data from   Example   8      

Enter the weights
to be placed on
each of the last
three periods at
the top of column
C. Weights must
be entered from
oldest to most
recent.

Forecast is the weighted sum of past sales
(SUMPRODUCT) divided by the sum of the
weights (SUM) because weights do not sum to 1.

Error (B11 – E11)
is the difference
between the 
demand and the
forecast.

= AVERAGE(H11: H19)

The standard error is given by the square root of the 
total error divided by n – 2 , where n is the number  
of periods for which forecasts exist, i.e., 9.

= SUMPRODUCT(B17:B19,
$C$8:$C$10)/SUM($C$8:$C$10)

      Program   4.2      

Analysis of Excel OM’s Weighted-Moving-Average Program, Using Data from   Example   2   as Input    
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     P  USING POM FOR WINDOWS  
 POM for Windows can project moving averages (both simple and weighted), handle exponential smoothing (both simple and trend 
adjusted), forecast with least squares trend projection, and solve linear regression (associative) models. A summary screen of error 
analysis and a graph of the data can also be generated. As a special example of exponential smoothing adaptive forecasting, when 
using an a of 0, POM for Windows will find the a value that yields the minimum MAD. 

   Appendix   IV   provides further details.   

   SOLVED PROBLEM 4.1  
 Sales of Volkswagen’s popular Beetle have grown steadily at 
auto dealerships in Nevada during the past 5 years (see table 
below). The sales manager had predicted before the new model 
was introduced that first year sales would be 410 VWs. Using 
exponential smoothing with a weight of a 5 .30, develop fore-
casts for years 2 through 6.   

YEAR SALES FORECAST

1 450 410
2 495
3 518
4 563
5 584
6 ?

   SOLUTION    

YEAR FORECAST

1 410.0

2 422.0 =  410 +  .3 (450 -  410)

3 443.9 =  422 +  .3 (495 -  422)

4 466.1 =  443.9 +  .3 (518 -  443.9)

5 495.2 =  466.1 +  .3 (563 -  466.1)

6 521.8 =  495.2 +  .3 (584 -  495.2)

   Solved Problems    Virtual Office Hours help is available in MyOMLab. 

   SOLVED PROBLEM 4.3  
 Sales of hair dryers at the Walgreens stores in Youngstown, 
Ohio, over the past 4 months have been 100, 110, 120, and 130 
units (with 130 being the most recent sales). 

 Develop a moving-average forecast for next month, using 
these three techniques: 

    a) 3-month moving average.  
   b) 4-month moving average.  
   c) Weighted 4-month moving average with the most recent 

month weighted 4, the preceding month 3, then 2, and the 
oldest month weighted 1.  

   d) If next month’s sales turn out to be 140 units, forecast the 
following month’s sales (months) using a 4-month mov-
ing average.    

   SOLUTION  
    a) 3-month moving average 

     =
110 + 120 + 130

3
=

360
3

= 120 dryers    

   b) 4-month moving average 

     =
100 + 110 + 120 + 130

4
=

460
4

= 115 dryers    

   c) Weighted moving average 

     =
4(130) + 3(120) + 2(110) + 1(100)

10
  =

1,200
10

= 120 dryers    

   d)  Now  the four most recent sales are 110, 120, 130, and 140. 

     4@month moving average =
110 + 120 + 130 + 140

4
=

500
4

= 125 dryers     

 We note, of course, the lag in the forecasts, as the moving-
average method does not immediately recognize trends.  

   SOLVED PROBLEM 4.2  
 In   Example   7  , we applied trend-adjusted exponential smooth-
ing to forecast demand for a piece of pollution-control equip-
ment for months 2 and 3 (out of 9 months of data provided). 
Let us now continue this process for month 4. We want to con-
firm the forecast for month 4 shown in   Table   4.2   (p.  123 ) and 
  Figure   4.3   (p.  123 ). 

 For month 4,  A  4 = 19, with  a = .2,  and  b = .4 .  

   SOLUTION  

     F4 = aA3 + (1 - a)(F3 + T3)
  = (.2)(20) + (1 - .2)(15.18 + 2.10)
  = 4.0 + (.8)(17.28)
  = 4.0 + 13.82
  = 17.82
  T4 = b(F4 - F3) + (1 - b)T3
  = (.4)(17.82 - 15.18) + (1 - .4)(2.10)
  = (.4)(2.64) + (.6)(2.10)
  = 1.056 + 1.26
  = 2.32
  FIT4 = 17.82 + 2.32
  = 20.14     
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   SOLVED PROBLEM 4.4  
 The following data come from regression line projections:   

PERIOD FORECAST VALUES ACTUAL VALUES

1 410 406
2 419 423
3 428 423
4 435 440

 Compute the MAD and MSE.  

   SOLVED PROBLEM 4.5  
 Room registrations in the Toronto Towers Plaza Hotel have 
been recorded for the past 9 years. To project future occu-
pancy, management would like to determine the mathemati-
cal trend of guest registration. This estimate will help the hotel 
determine whether future expansion will be needed. Given the 
following time-series data, develop a regression equation relat-
ing registrations to time (e.g., a trend equation). Then forecast 
year 11 registrations. Room registrations are in the thousands:   

Year 1: 17 Year 2: 16 Year 3: 16 Year 4: 21 Year 5: 20

Year 6: 20 Year 7: 23 Year 8: 25 Year 9: 24

   SOLVED PROBLEM 4.6  
 Quarterly demand for Ford F150 pickups at a New York auto 
dealer is forecast with the equation: 

   yn =  10 +  3x   
 where  x = quarters, and: 

   Quarter I of year 1 = 0
Quarter II of year 1 = 1

Quarter III of year 1 = 2
Quarter IV of year 1 = 3

Quarter I of year 2 = 4
and so on   

 and: 

   yn = quarterly demand   

 The demand for trucks is seasonal, and the indices for Quarters 
I, II, III, and IV are 0.80, 1.00, 1.30, and 0.90, respectively. 
Forecast demand for each quarter of year 3. Then, seasonalize 
each forecast to adjust for quarterly variations.  

   SOLUTION  

 MAD =
g  0Actual - Forecast 0

n

 =
0 406 - 410 0 + 0423 - 419 0 + 0423 - 428 0 + 0440 - 435 0

4

 =
4 + 4 + 5 + 5

4
=

18
4

= 4.5    

 MSE =
g(Forecast errors)2

n

 =
(406 - 410)2 + (423- 419)2 + (423- 428)2 + (440 - 435)2

4

 =
42 + 42 + 52 + 52

4
=

16 + 16 + 25 + 25
4

= 20.5     

   SOLUTION    

YEAR
REGISTRANTS,  y  
(IN THOUSANDS)  x 2   xy 

1 17 1 17
2 16 4 32
3 16 9 48
4 21 16 84

5 20 25 100
6 20 36 120
7 23 49 161
8 25 64 200
 9  24  81  216 

g  x = 45 g  y = 182 g  x  2 = 285 g  xy = 978

    b =
gxy - nx y
gx2 - nx2 =

978 - (9)(5)(20.22)
285 - (9)(25)

 =
978 - 909.9
285 - 225

=
68.1
60

= 1.135    

 a = y - bx = 20.22 - (1.135)(5) = 20.22 - 5.675 = 14.545 
  yn = (registrations) = 14.545 + 1.135 x  
 The projection of registrations in year 11 is: 
   yn  = 14.545 + (1.135)(11) = 27.03 or 27,030 guests in year 11.  

   SOLUTION  
 Quarter II of year 2 is coded  x = 5; Quarter III of year 2,  x =
6; and Quarter IV of year 2,  x = 7. Hence, Quarter I of year 3 
is coded  x = 8; Quarter II,  x = 9; and so on. 

   yn (Year 3 Quarter I) = 10 + 3(8) = 34
yn (Year 3 Quarter II) = 10 + 3(9) = 37

yn (Year 3 Quarter III) = 10 + 3(10) = 40
yn (Year 3 Quarter IV) = 10 + 3(11) = 43   

   Adjusted forecast = (.80)(34) = 27.2
Adjusted forecast = (1.00)(37) = 37
Adjusted forecast = (1.30)(40) = 52
Adjusted forecast = (.90)(43) = 38.7    
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   SOLVED PROBLEM 4.7  
 Cengiz Haksever runs an Istanbul high-end jewelry shop. He 
advertises weekly in local Turkish newspapers and is thinking 
of increasing his ad budget. Before doing so, he decides to eval-
uate the past effectiveness of these ads. Five weeks are sampled, 
and the data are shown in the table below:   

SALES 
($1,000s)

AD BUDGET 
THAT WEEK 

($100s)

11 5

 6 3

10 7

 6 2

12 8

 Develop a regression model to help Cengiz evaluate his 
 advertising.  

   SOLUTION  
 We apply the least-squares regression model as we did in 
  Example   12  .   

SALES,  y ADVERTISING,  x  x  2  xy 

11 5 25 55
6 3 9 18

10 7 49 70
6 2 4 12

 12  8  64  96 

 gy = 45  gx = 25  gx2 = 151  gxy = 251 

 y =
45
5

= 9  x =
25
5

= 5 

    b =
gxy - nx y
gx2 - nx2 =

251 - (5)(5)(9)
151 - (5)(52)

 =
251 - 225
151 - 125

=
26
26

= 1    

 a = y - bx = 9 - (1)(5) = 4 

 So the regression model is   yn  = 4 + 1x, or 
 Sales (in $1,000s) =  4 + 1 (Ad budget in $100s) 

 This means that for each 1-unit increase in  x  (or $100 in ads), 
sales increase by 1 unit (or $1,000).  

   SOLVED PROBLEM 4.8  
 Using the data in Solved Problem 4.7, find the coefficient of 
determination,  r  2 , for the model.  

   SOLUTION  

 To find  r  2 , we need to also compute  gy2 . 

gy2 = 112 + 62 + 102 + 62 + 122

 = 121 + 36 + 100 + 36 + 144 = 437   

 The next step is to find the coefficient of correlation,  r : 

 r =
ngxy - gxgy

2[ngx2 - (gx)2][ngy2 - (gy)2]

 =
5(251) - (25)(45)

2[5(151) - (25)2][5(437) - (45)2]

 =
1,255 - 1,125

2(130)(160)
=

130

220, 800
=

130
144.22

 = .9014    

 Thus,  r2 = (.9014)2 = .8125,  meaning that about 81% of the 
variability in sales can be explained by the regression model 
with advertising as the independent variable.   

 Problems 4.1–4.42 relate to Time-Series Forecasting 

       •  4.1    The following gives the number of pints of type B 
blood used at Woodlawn Hospital in the past 6 weeks:   

WEEK OF PINTS USED

August 31 360

September 7 389

September 14 410

September 21 381

September 28 368

October 5 374

   a) Forecast the demand for the week of October 12 using a 
3-week moving average.  

  b) Use a 3-week weighted moving average, with weights of .1, .3, 
and .6, using .6 for the most recent week. Forecast demand for 
the week of October 12.  

  c) Compute the forecast for the week of October 12 using exponential 
smoothing with a forecast for August 31 of 360 and a = .2.  PX       

      • •  4.2       

 YEAR 1 2 3 4 5 6  7  8 9 10 11

 DEMAND 7 9 5 9 13 8 12 13 9 11  7

   a) Plot the above data on a graph. Do you observe any trend, 
cycles, or random variations?  

  b) Starting in year 4 and going to year 12, forecast demand using 
a 3-year moving average. Plot your forecast on the same graph 
as the original data.  

   Problems     Note:   PX   means the problem may be solved with POM for Windows and/or Excel OM. 
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  c) Starting in year 4 and going to year 12, forecast demand using 
a 3-year moving average with weights of .1, .3, and .6, using .6 
for the most recent year. Plot this forecast on the same graph.  

  d) As you compare forecasts with the original data, which seems 
to give the better results?  PX       

      • •  4.3    Refer to Problem 4.2. Develop a forecast for years 2 
through 12 using exponential smoothing with a = .4 and a fore-
cast for year 1 of 6. Plot your new forecast on a graph with the 
actual data and the naive forecast. Based on a visual inspection, 
which forecast is better?  PX     

      •  4.4    A check-processing center uses exponential smooth-
ing to forecast the number of incoming checks each month. The 
number of checks received in June was 40 million, while the fore-
cast was 42 million. A smoothing constant of .2 is used. 
   a) What is the forecast for July?  
  b) If the center received 45 million checks in July, what would be 

the forecast for August?  
  c) Why might this be an inappropriate forecasting method for 

this situation?  PX       

      • •  4.5    The Carbondale Hospital is considering the purchase 
of a new ambulance. The decision will rest partly on the antici-
pated mileage to be driven next year. The miles driven during the 
past 5 years are as follows:   

YEAR MILEAGE

1 3,000

2 4,000

3 3,400

4 3,800

5 3,700

   a) Forecast the mileage for next year (6th year) using a 2-year 
moving average.  

  b) Find the MAD based on the 2-year moving average. ( Hint:  
You will have only 3 years of matched data.)  

  c) Use a weighted 2-year moving average with weights of .4 
and .6 to forecast next year’s mileage. (The weight of .6 is 
for the most recent year.) What MAD results from using this 
approach to forecasting? ( Hint:  You will have only 3 years of 
matched data.)  

  d) Compute the forecast for year 6 using exponential smoothing, 
an initial forecast for year 1 of 3,000 miles, and a = .5.  PX       

      • •  4.6     The monthly sales for Yazici Batteries, Inc., were as 
follows:   

MONTH SALES

January 20

February 21

March 15

April 14

May 13

June 16

July 17

August 18

September 20

October 20

November 21

December 23

   a) Plot the monthly sales data.  
  b) Forecast January sales using each of the following: 
    i) Naive method.  
   ii) A 3-month moving average.  
   iii)  A 6-month weighted average using .1, .1, .1, .2, .2, and .3, 

with the heaviest weights applied to the most recent months.  
   iv)  Exponential smoothing using an a = .3 and a September 

forecast of 18.  
   v) A trend projection.    
  c) With the data given, which method would allow you to fore-

cast next March’s sales?  PX       

      • •  4.7    The actual demand for the patients at Omaha 
Emergency Medical Clinic for the first 6 weeks of this year fol-
lows:   

WEEK
ACTUAL NO. OF 

PATIENTS

1 65

2 62

3 70

4 48

5 63

6 52

 Clinic administrator Marc Schniederjans wants you to forecast 
patient demand at the clinic for week 7 by using this data. You 
decide to use a weighted moving average method to find this fore-
cast. Your method uses four actual demand levels, with weights 
of 0.333 on the present period, 0.25 one period ago, 0.25 two peri-
ods ago, and 0.167 three periods ago. 
   a) What is the value of your forecast?  PX    
  b) If instead the weights were 20, 15, 15, and 10, respectively, how 

would the forecast change? Explain why.  
  c) What if the weights were 0.40, 0.30, 0.20, and 0.10, respec-

tively? Now what is the forecast for week 7?     

      •  4.8    Daily high temperatures in St. Louis for the last week 
were as follows: 93, 94, 93, 95, 96, 88, 90 (yesterday). 
   a) Forecast the high temperature today, using a 3-day moving 

average.  
  b) Forecast the high temperature today, using a 2-day moving 

average.  
  c) Calculate the mean absolute deviation based on a 2-day mov-

ing average.  
  d) Compute the mean squared error for the 2-day moving average.  
  e) Calculate the mean absolute percent error for the 2-day mov-

ing average.  PX       

      • • •  4.9     Lenovo uses the ZX-81 chip in some of its laptop 
computers. The prices for the chip during the past 12 months 
were as follows:   

MONTH
PRICE PER 

CHIP MONTH
PRICE PER 

CHIP

January $1.80 July 1.80

February 1.67 August 1.83

March 1.70 September 1.70

April 1.85 October 1.65

May 1.90 November 1.70

June 1.87 December 1.75
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   a) Use exponential smoothing, first with a smoothing constant 
of .6 and then with one of .9, to develop forecasts for years 2 
through 6.  

  b) Use a 3-year moving average to forecast demand in years 4, 5, 
and 6.  

  c) Use the trend-projection method to forecast demand in years 1 
through 6.  

  d) With MAD as the criterion, which of the four forecasting 
methods is best?  PX       

      • •  4.14    Following are two weekly forecasts made by two dif-
ferent methods for the number of gallons of gasoline, in thou-
sands, demanded at a local gasoline station. Also shown are 
actual demand levels, in thousands of gallons.   

 FORECASTS 

WEEK METHOD 1 METHOD 2 ACTUAL DEMAND

1 0.90 0.80 0.70

2 1.05 1.20 1.00

3 0.95 0.90 1.00

4 1.20 1.11 1.00

 What are the MAD and MSE for each method?   

      •  4.15     Refer to Solved Problem 4.1 on page  144 . 
   a) Use a 3-year moving average to forecast the sales of 

Volkswagen Beetles in Nevada through year 6.  
  b) What is the MAD?  PX    
  c) What is the MSE?     

      •  4.16     Refer to Solved Problem 4.1 on page 144. 
   a) Using the trend projection (regression) method, develop a 

forecast for the sales of Volkswagen Beetles in Nevada through 
year 6.  

  b) What is the MAD?  PX    
  c) What is the MSE?     

      •  4.17     Refer to Solved Problem 4.1 on page 144. Using 
smoothing constants of .6 and .9, develop forecasts for the sales 
of VW Beetles. What effect did the smoothing constant have on 
the forecast? Use MAD to determine which of the three smooth-
ing constants (.3, .6, or .9) gives the most accurate forecast.  PX     

      • • • •  4.18    Consider the following actual ( A t  ) and forecast ( F t  ) 
demand levels for a commercial multiline telephone at Office 
Max:   

   a) Use a 2-month moving average on all the data and plot the 
averages and the prices.  

  b) Use a 3-month moving average and add the 3-month plot to 
the graph created in part (a).  

  c) Which is better (using the mean absolute deviation): the 
2-month average or the 3-month average?  

  d) Compute the forecasts for each month using exponential 
smoothing, with an initial forecast for January of $1.80. Use a

= .1, then a = .3, and finally a = .5. Using MAD, which a 
is the best?  PX       

      • •  4.10    Data collected on the yearly registrations for a Six 
Sigma seminar at the Quality College are shown in the following 
table:   

 YEAR 1 2 3 4  5 6 7 8  9 10 11

REGISTRATIONS (000) 4 6 4 5 10 8 7 9 12 14 15

   a) Develop a 3-year moving average to forecast registrations 
from year 4 to year 12.  

  b) Estimate demand again for years 4 to 12 with a 3-year weighted 
moving average in which registrations in the most recent year 
are given a weight of 2, and registrations in the other 2 years 
are each given a weight of 1.  

  c) Graph the original data and the two forecasts. Which of the 
two forecasting methods seems better?  PX       

      •  4.11    Use exponential smoothing with a smoothing con-
stant of 0.3 to forecast the registrations at the seminar given in 
Problem 4.10. To begin the procedure, assume that the forecast 
for year 1 was 5,000 people signing up. 
   a) What is the MAD?  PX    
  b) What is the MSE?        

      • •  4.12    Consider the following actual and forecast 
demand levels for Big Mac hamburgers at a local McDonald’s 
restaurant:   

DAY ACTUAL DEMAND FORECAST DEMAND

Monday 88 88

Tuesday 72 88

Wednesday 68 84

Thursday 48 80

Friday

 The forecast for Monday was derived by observing Monday’s 
demand level and setting Monday’s forecast level equal to this 
demand level. Subsequent forecasts were derived by using expo-
nential smoothing with a smoothing constant of 0.25. Using this 
exponential smoothing method, what is the forecast for Big Mac 
demand for Friday?  PX     

      • • •  4.13     As you can see in the following table, demand for 
heart transplant surgery at Washington General Hospital has 
increased steadily in the past few years:   

 YEAR 1 2 3 4 5 6

 HEART TRANSPLANTS 45 50 52 56 58 ?

 The director of medical services predicted 6 years ago that 
demand in year 1 would be 41 surgeries.    
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   a) Compute MAD and MAPE for management’s technique.  
  b) Do management’s results outperform (i.e., have smaller MAD 

and MAPE than) a naive forecast?  
  c) Which forecast do you recommend, based on lower forecast 

error?PX      

      •  4.24    The following gives the number of accidents 
that occurred on Florida State Highway 101 during the past 4 
months:   

MONTH NUMBER OF ACCIDENTS

January 30

February 40

March 60

April 90

 Forecast the number of accidents that will occur in May, using 
least-squares regression to derive a trend equation. PX     

      •  4.25    In the past, Peter Kelle’s tire dealership in Baton 
Rouge sold an average of 1,000 radials each year. In the past 
2 years, 200 and 250, respectively, were sold in fall, 350 and 300 
in winter, 150 and 165 in spring, and 300 and 285 in summer. 
With a major expansion planned, Kelle projects sales next year 
to increase to 1,200 radials. What will be the demand during each 
season?   

       • •  4.26    George Kyparisis owns a company that manufactures 
sailboats. Actual demand for George’s sailboats during each of 
the past four seasons was as follows:   

 YEAR 

SEASON 1 2 3 4

Winter 1,400 1,200 1,000 900

Spring 1,500 1,400 1,600 1,500

Summer 1,000 2,100 2,000 1,900

Fall 600 750 650 500

 George has forecasted that annual demand for his sailboats 
in year 5 will equal 5,600 sailboats. Based on this data and the 
multiplicative seasonal model, what will the demand level be for 
George’s sailboats in the spring of year 5?   

       • •  4.27    Attendance at Orlando’s newest Disneylike attrac-
tion, Lego World, has been as follows:   

QUARTER
GUESTS (IN 

THOUSANDS) QUARTER
GUESTS 

(IN THOUSANDS)

Winter Year 1 73 Summer Year 2 124

Spring Year 1 104 Fall Year 2 52

Summer Year 1 168 Winter Year 3 89

Fall Year 1 74 Spring Year 3 146

Winter Year 2 65 Summer Year 3 205

Spring Year 2 82 Fall Year 3 98

 Compute seasonal indices using all of the data.  PX     

      •  4.28    North Dakota Electric Company estimates its demand 
trend line (in millions of kilowatt hours) to be: 

   D =  77 +  0.43Q   

TIME 
PERIOD,  t 

ACTUAL 
DEMAND,  A t  

FORECAST 
DEMAND,  F t  

1 50 50
2 42 50
3 56 48
4 46 50
5

 The first forecast,  F  1 , was derived by observing  A  1  and setting  F  1  
equal to  A  1 . Subsequent forecast averages were derived by expo-
nential smoothing. Using the exponential smoothing method, 
find the forecast for time period 5. ( Hint:  You need to first find 
the smoothing constant, a.)   

      • • •  4.19    Income at the architectural firm Spraggins and Yunes 
for the period February to July was as follows:   

MONTH FEBRUARY MARCH APRIL MAY JUNE JULY

 Income 
(in $ thousand) 70.0 68.5 64.8 71.7 71.3 72.8

 Use trend-adjusted exponential smoothing to forecast the firm’s 
August income. Assume that the initial forecast average for 
February is $65,000 and the initial trend adjustment is 0. The 
smoothing constants selected are a = .1 and b = .2.  PX     

      • • •  4.20    Resolve Problem 4.19 with a = .1 and b = .8. Using 
MSE, determine which smoothing constants provide a better 
forecast.  PX     

      •  4.21    Refer to the trend-adjusted exponential smoothing 
illustration in   Example   7   on pages  122 – 123 . Using a = .2 and 
b = .4, we forecast sales for 9 months, showing the detailed cal-
culations for months 2 and 3. In Solved Problem 4.2, we contin-
ued the process for month 4. 

 In this problem, show your calculations for months 5 and 6 for 
 F t  ,  T t  , and  FIT t  .  PX     

      •  4.22    Refer to Problem 4.21. Complete the trend-adjusted 
exponential-smoothing forecast computations for periods 7, 8, 
and 9. Confirm that your numbers for  F t  ,  T t  , and  FIT t   match 
those in   Table   4.2   (p.  123 ).  PX     

       • •  4.23     Sales of quilt covers at Bud Banis’s department store 
in Carbondale over the past year are shown below. Management 
prepared a forecast using a combination of exponential smooth-
ing and its collective judgment for the 4 months (March, April, 
May, and June):   

MONTH UNIT SALES MANAGEMENT’S FORECAST

July 100
August 93
September 96
October 110
November 124
December 119
January 92
February 83
March 101 120
April 96 114
May 89 110
June 108 108
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      • • •  4.32    Using the 911 call data in Problem 4.31, forecast 
calls for weeks 2 through 25 with a trend-adjusted exponential 
smoothing model. Assume an initial forecast for 50 calls for week 
1 and an initial trend of zero. Use smoothing constants of a = .3 
and b = .2. Is this model better than that of Problem 4.31? What 
adjustment might be useful for further improvement? (Again, 
assume that actual calls in week 25 were 85.)  PX     

      • • •  4.33    Storrs Cycles has just started selling the new Cyclone 
mountain bike, with monthly sales as shown in the table. First, 
co-owner Bob Day wants to forecast by exponential smoothing 
by initially setting February’s forecast equal to January’s sales 
with a = .1. Co-owner Sherry Snyder wants to use a three-period 
moving average.   

SALES BOB SHERRY
BOB’S 
ERROR

SHERRY’S 
ERROR

 JANUARY 400 —

 FEBRUARY 380 400

 MARCH 410

 APRIL 375

 MAY 

   a) Is there a strong linear trend in sales over time?  
  b) Fill in the table with what Bob and Sherry each forecast for 

May and the earlier months, as relevant.  
  c) Assume that May’s actual sales figure turns out to be 405. 

Complete the table’s columns and then calculate the mean 
absolute deviation for both Bob’s and Sherry’s methods.  

  d) Based on these calculations, which method seems more 
accurate?  PX       

      • • • •  4.34    Boulanger Savings and Loan is proud of its long tra-
dition in Winter Park, Florida. Begun by Michelle Boulanger 
22 years after World War II, the S&L has bucked the trend of 
financial and liquidity problems that has repeatedly plagued 
the industry. Deposits have increased slowly but surely over the 
years, despite recessions in 1983, 1988, 1991, 2001, and 2010. Ms. 
Boulanger believes it is necessary to have a long-range strategic 
plan for her firm, including a 1-year forecast and preferably even 
a 5-year forecast of deposits. She examines the past deposit data 
and also peruses Florida’s gross state product (GSP) over the same 
44 years. (GSP is analogous to gross national product [GNP] but 
on the state level.) The resulting data are in the following table.   

YEAR DEPOSITS    a    GSP    b    YEAR DEPOSITS    a    GSP    b    

1 .25 .4 13 .50 1.2

2 .24 .4 14 .95 1.2

3 .24 .5 15 1.70 1.2

4 .26 .7 16 2.3 1.6

5 .25 .9 17 2.8 1.5

6 .30 1.0 18 2.8 1.6

7 .31 1.4 19 2.7 1.7

8 .32 1.7 20 3.9 1.9

9 .24 1.3 21 4.9 1.9

10 .26 1.2 22 5.3 2.3

11 .25 1.1 23 6.2 2.5

12 .33 .9 24 4.1 2.8

 where  Q  refers to the sequential quarter number and  Q  5 1 for 
winter of Year 1. In addition, the multiplicative seasonal factors 
are as follows:   

QUARTER FACTOR (INDEX)

Winter .8

Spring 1.1

Summer 1.4

Fall .7

 Forecast energy use for the four quarters of year 26 (namely quar-
ters 101 to 104), beginning with winter.   

      •  4.29    The number of disk drives (in millions) made at a 
plant in Taiwan during the past 5 years follows:   

YEAR DISK DRIVES

1 140

2 160

3 190

4 200

5 210

   a) Forecast the number of disk drives to be made next year, using 
linear regression.  

  b) Compute the mean squared error (MSE) when using linear 
regression.  

  c) Compute the mean absolute percent error (MAPE).  PX       

       • •  4.30    Dr. Lillian Fok, a New Orleans psychologist, spe-
cializes in treating patients who are agoraphobic (i.e., afraid 
to leave their homes). The following table indicates how many 
patients Dr. Fok has seen each year for the past 10 years. It also 
indicates what the robbery rate was in New Orleans during the 
same year:   

 YEAR 1 2 3 4 5 6 7 8 9 10

 NUMBER 
OF PATIENTS 36 33 40 41 40 55 60 54 58 61

 ROBBERY RATE 
PER 1,000 

POPULATION 
58.3 61.1 73.4 75.7 81.1 89.0 101.1 94.8 103.3 116.2

 Using trend (linear regression) analysis, predict the number of 
patients Dr. Fok will see in years 11 and 12 as a function of time. 
How well does the model fit the data?  PX     

      • • •  4.31    Emergency calls to the 911 system of Durham, 
North Carolina, for the past 24 weeks are shown in the following 
table:   

 WEEK 1 2 3 4 5 6 7 8 9 10 11 12

 CALLS 50 35 25 40 45 35 20 30 35 20 15 40

 WEEK 13 14 15 16 17 18 19 20 21 22 23 24

 CALLS 55 35 25 55 55 40 35 60 75 50 40 65

   a) Compute the exponentially smoothed forecast of calls for each 
week. Assume an initial forecast of 50 calls in the first week, 
and use a = .2. What is the forecast for week 25?  

  b) Reforecast each period using a = .6.  
  c) Actual calls during week 25 were 85. Which smoothing con-

stant provides a superior forecast? Explain and justify the 
measure of error you used.  PX       (continued)
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PRICE NUMBER SOLD

$2.70 760

$3.50 510

$2.00 980

$4.20 250

$3.10 320

$4.05 480

 Using these data, how many mocha latte coffees would be fore-
cast to be sold according to simple linear regression if the price 
per cup were $2.80?  PX     

      •  4.46    The following data relate the sales figures of the bar 
in Mark Kaltenbach’s small bed-and-breakfast inn in Portand, to 
the number of guests registered that week:   

WEEK GUESTS BAR SALES

1 16 $330

2 12 270

3 18 380

4 14 300

   a) Perform a linear regression that relates bar sales to guests (not 
to time).  

  b) If the forecast is for 20 guests next week, what are the sales 
expected to be?  PX       

      •  4.47    The number of auto accidents in Athens, Ohio, is 
related to the regional number of registered automobiles in thou-
sands ( X  1 ), alcoholic beverage sales in $10,000s ( X  2 ), and rainfall 
in inches ( X  3 ). Furthermore, the regression formula has been cal-
culated as: 

   Y = a + b1X1 + b2X2 + b3X3   
 where 

    Y  5 number of automobile accidents  
   a  5 7.5  

   b  1  5 3.5  
   b  2  5 4.5  
   b  3  5 2.5   

 Calculate the expected number of automobile accidents under 
conditions a, b, and c:   

 X  1  X  2  X  3 

(a) 2 3 0
(b) 3 5 1
(c) 4 7 2

      • •  4.48    Rhonda Clark, a Slippery Rock, Pennsylvania, real 
estate developer, has devised a regression model to help determine 
residential housing prices in northwestern Pennsylvania. The 
model was developed using recent sales in a particular neighbor-
hood. The price ( Y ) of the house is based on the size (square foot-
age 5  X ) of the house. The model is: 

   Y = 13,473 + 37.65X    
 The coefficient of correlation for the model is 0.63. 
   a) Use the model to predict the selling price of a house that is 

1,860 square feet.  
  b) An 1,860-square-foot house recently sold for $95,000. Explain 

why this is not what the model predicted.  

YEAR DEPOSITSa GSPb YEAR DEPOSITSa GSPb

25 4.5 2.9 35 31.1 4.1

26 6.1 3.4 36 31.7 4.1

27 7.7 3.8 37 38.5 4.0

28 10.1 4.1 38 47.9 4.5

29 15.2 4.0 39 49.1 4.6

30 18.1 4.0 40 55.8 4.5

31 24.1 3.9 41 70.1 4.6

32 25.6 3.8 42 70.9 4.6

33 30.3 3.8 43 79.1 4.7

34 36.0 3.7 44 94.0 5.0

     a    In $ millions.  
     b    In $ billions.  

   a) Using exponential smoothing, with  a  5 .6, then trend analysis, 
and finally linear regression, discuss which forecasting model 
fits best for Boulanger’s strategic plan. Justify the selection of 
one model over another.  

  b) Carefully examine the data. Can you make a case for exclud-
ing a portion of the information? Why? Would that change 
your choice of model?  PX  

Additional problems 4.35–4.42 are available in MyOMLab.

Problems 4.43–4.58 relate to Associative Forecasting Methods
     

      • •  4.43    Mark Gershon, owner of a musical instrument dis-
tributorship, thinks that demand for guitars may be related to the 
number of television appearances by the popular group Maroon 5 
during the previous month. Mark has collected the data shown in 
the following table:   

 DEMAND FOR GUITARS 3 6 7 5 10 7

 MAROON 5 TV APPEARANCES 3 4 7 6 8 5

   a) Graph these data to see whether a linear equation might 
describe the relationship between the group’s television shows 
and guitar sales.  

  b) Use the least-squares regression method to derive a forecasting 
equation.  

  c) What is your estimate for guitar sales if Maroon 5 performed 
on TV nine times last month?  

  d) What are the correlation coefficient ( r ) and the coefficient of 
determination ( r  2 ) for this model, and what do they mean?  PX       

      •  4.44    Lori Cook has developed the following forecasting 
model: 

   ny = 36 + 4.3x   

   where  ny =  demand for Kool Air conditioners and  
    x  5 the outside temperature (°F)  PX     

   a) Forecast demand for the Kool Air when the temperature is 70°F.  
  b) What is demand when the temperature is 80°F?  
  c) What is demand when the temperature is 90°F?  PX       

      • •  4.45    Café Michigan’s manager, Gary Stark, suspects 
that demand for mocha latte coffees depends on the price being 
charged. Based on historical observations, Gary has gathered the 
following data, which show the numbers of these coffees sold over 
six different price values:   
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YEAR 
(SUMMER MONTHS)

NUMBER OF TOURISTS 
(IN MILLIONS)

RIDERSHIP 
(IN MILLIONS)

1 7 1.5
2 2 1.0
3 6 1.3
4 4 1.5
5 14 2.5
6 15 2.7
7 16 2.4
8 12 2.0
9 14 2.7
10 20 4.4
11 15 3.4
12 7 1.7

   a) Plot these data and decide if a linear model is reasonable.  
  b) Develop a regression relationship.  
  c) What is expected ridership if 10 million tourists visit London 

in a year?  
  d) Explain the predicted ridership if there are no tourists at all.  
  e) What is the standard error of the estimate?  
  f) What is the model’s correlation coefficient and coefficient of 

determination?  PX       

       • •  4.53    Thirteen students entered the business program at 
Sante Fe College 2 years ago. The following table indicates what 
each student scored on the high school SAT math exam and their 
grade-point averages (GPAs) after students were in the Sante Fe 
program for 2 years:   

 STUDENT A B C D E F G
 SAT SCORE 421 377 585 690 608 390 415
 GPA 2.90 2.93 3.00 3.45 3.66 2.88 2.15
 STUDENT H I J K L M
 SAT SCORE 481 729 501 613 709 366
 GPA 2.53 3.22 1.99 2.75 3.90 1.60

   a) Is there a meaningful relationship between SAT math scores 
and grades?  

  b) If a student scores a 350, what do you think his or her GPA 
will be?  

  c) What about a student who scores 800?     

      •  •  4.54    Dave Fletcher, the general manager of North Carolina 
Engineering Corporation (NCEC), thinks that his firm’s engineer-
ing services contracted to highway construction firms are directly 
related to the volume of highway construction business contracted 
with companies in his geographic area. He wonders if this is really 
so, and if it is, can this information help him plan his operations 
better by forecasting the quantity of his engineering services 
required by construction firms in each quarter of the year? The 
following table presents the sales of his services and total amounts 
of contracts for highway construction over the past eight quarters:   

QUARTER 1 2 3 4 5 6 7 8

 Sales of NCEC Services 
(in $ thousands) 

8 10 15 9 12 13 12 16

 Contracts Released
(in $ thousands) 

153 172 197 178 185 199 205 226

   a) Using this data, develop a regression equation for predicting 
the level of demand of NCEC’s services.  

  c) If you were going to use multiple regression to develop such a 
model, what other quantitative variables might you include?  

  d) What is the value of the coefficient of determination in this 
problem?  PX       

      •  4.49    Accountants at the Tucson firm, Larry Youdelman, 
CPAs, believed that several traveling executives were submitting 
unusually high travel vouchers when they returned from business 
trips. First, they took a sample of 200 vouchers submitted from 
the past year. Then they developed the following multiple-regres-
sion equation relating expected travel cost to number of days on 
the road ( x  1 ) and distance traveled ( x  2 ) in miles: 

   ny = +90.00 + +48.50x1 + +.40x2   

 The coefficient of correlation computed was .68. 
   a) If Donna Battista returns from a 300-mile trip that took her 

out of town for 5 days, what is the expected amount she should 
claim as expenses?  

  b) Battista submitted a reimbursement request for $685. What 
should the accountant do?  

  c) Should any other variables be included? Which ones? Why?  PX       

       • •  4.50    City government has collected the following data on 
annual sales tax collections and new car registrations:   

 ANNUAL SALES TAX COLLECTIONS 
(IN MILLIONS) 

1.0 1.4 1.9 2.0 1.8 2.1 2.3

 NEW CAR REGISTRATIONS 
(IN THOUSANDS) 

10 12 15 16 14 17 20

 Determine the following: 
   a) The least-squares regression equation.  
  b) Using the results of part (a), find the estimated sales tax collec-

tions if new car registrations total 22,000.  
  c) The coefficients of correlation and determination.  PX       

      • •  4.51    Using the data in Problem 4.30, apply linear regres-
sion to study the relationship between the robbery rate and 
Dr. Fok’s patient load. If the robbery rate increases to 131.2 in 
year 11, how many phobic patients will Dr. Fok treat? If the rob-
bery rate drops to 90.6, what is the patient projection?  PX     

      • • •  4.52    Bus and subway ridership for the summer months in 
London, England, is believed to be tied heavily to the number of 
tourists visiting the city. During the past 12 years, the data on the 
next page have been obtained:      
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  b) Compute the MAD.  
  c) Compute the tracking signal.  PX       

      • • •  4.60    The following are monthly actual and forecast 
demand levels for May through December for units of a product 
manufactured by the D. Bishop Company in Des Moines:   

MONTH ACTUAL DEMAND FORECAST DEMAND

May 100 100
June 80 104
July 110 99
August 115 101
September 105 104
October 110 104
November 125 105
December 120 109

 What is the value of the tracking signal as of the end of December?

Additional problem 4.61 is available in MyOMLab.      

  b) Determine the coefficient of correlation and the standard error 
of the estimate.  PX  

Additional problems 4.55-4.58 are available in MyOMLab.

Problems 4.59–4.61 relate to Monitoring and Controlling Forecasts
     

      • •  4.59    Sales of tablet computers at Ted Glickman’s electron-
ics store in Washington, D.C., over the past 10 weeks are shown 
in the table below:   

WEEK DEMAND WEEK DEMAND

1 20 6 29

2 21 7 36

3 28 8 22

4 37 9 25

5 25 10 28

   a) Forecast demand for each week, including week 10, using 
exponential smoothing with a 5 .5 (initial forecast 5 20).  

    CASE STUDIES 
 Southwestern University: (B)  *     

 Southwestern University (SWU), a large state college in 
Stephenville, Texas, enrolls close to 20,000 students. The school is 
a dominant force in the small city, with more students during fall 
and spring than permanent residents. 

 Always a football powerhouse, SWU is usually in the top 20 
in college football rankings. Since the legendary Phil Flamm was 

    Southwestern University Football Game Attendance, 2010–2015   

2010 2011 2012

GAME ATTENDEES OPPONENT ATTENDEES OPPONENT ATTENDEES OPPONENT

1 34,200 Rice 36,100 Miami 35,900 USC

2    a    39,800 Texas 40,200 Nebraska 46,500 Texas Tech

3 38,200 Duke 39,100 Ohio State 43,100 Alaska

4    b    26,900 Arkansas 25,300 Nevada 27,900 Arizona

5 35,100 TCU 36,200 Boise State 39,200 Baylor

 2013  2014  2015 

 GAME  ATTENDEES  OPPONENT  ATTENDEES  OPPONENT  ATTENDEES  OPPONENT 

1 41,900 Arkansas 42,500 Indiana 46,900 LSU

2    a    46,100 Missouri 48,200 North Texas 50,100 Texas

3 43,900 Florida 44,200 Texas A&M 45,900 South Florida

4    b    30,100 Central 
Florida

33,900 Southern 36,300 Montana

5 40,500 LSU 47,800 Oklahoma 49,900 Arizona State

     a    Homecoming games.  
     b    During the fourth week of each season, Stephenville hosted a hugely popular southwestern crafts fes-
tival. This event brought tens of thousands of tourists to the town, especially on weekends, and had an 
obvious negative impact on game attendance.  

hired as its head coach in 2009 (in hopes of reaching the elusive 
number 1 ranking), attendance at the five Saturday home games 
each year increased. Prior to Flamm’s arrival, attendance generally 
averaged 25,000 to 29,000 per game. Season ticket sales bumped up 
by 10,000 just with the announcement of the new coach’s arrival. 
Stephenville and SWU were ready to move to the big time! 
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 For its first 2 decades of existence, the NBA’s Orlando Magic 
basketball team set seat prices for its 41-game home schedule the 
same for each game. If a lower-deck seat sold for $150, that was 
the price charged, regardless of the opponent, day of the week, or 
time of the season. If an upper-deck seat sold for $10 in the first 
game of the year, it likewise sold for $10 for every game. 

 But when Anthony Perez, director of business strategy, fin-
ished his MBA at the University of Florida, he developed a valu-
able database of ticket sales. Analysis of the data led him to build 
a forecasting model he hoped would increase ticket revenue. Perez 
hypothesized that selling a ticket for similar seats should differ 
based on demand. 

 Studying individual sales of Magic tickets on the open Stub 
Hub marketplace during the prior season, Perez determined the 
additional potential sales revenue the Magic could have made 
had they charged prices the fans had proven they were willing to 
pay on Stub Hub. This became his dependent variable,  y , in a 
multiple-regression model. 

 He also found that three variables would help him build the 
“true market” seat price for every game. With his model, it was 
possible that the same seat in the arena would have as many as 
seven different prices created at season onset—sometimes higher 
than expected on average and sometimes lower. 

 The major factors he found to be statistically significant in 
determining how high the demand for a game ticket, and hence, 
its price, would be were: 

    ◆ The day of the week ( x  1 )  
   ◆ A rating of how popular the opponent was ( x  2 )  
   ◆ The time of the year ( x  3 )   

 For the day of the week, Perez found that Mondays were the 
least-favored game days (and he assigned them a value of 1). The 
rest of the weekdays increased in popularity, up to a Saturday 
game, which he rated a 6. Sundays and Fridays received 5 ratings, 
and holidays a 3 (refer to the footnote in   Table   4.3  ).     

 His ratings of opponents, done just before the start of the sea-
son, were subjective and range from a low of 0 to a high of 8. A 
very high-rated team in that particular season may have had one 
or more superstars on its roster, or have won the NBA finals the 
prior season, making it a popular fan draw. 

    Video Case 

 Finally, Perez believed that the NBA season could be divided into 
four periods in popularity: 

    ◆ Early games (which he assigned 0 scores)  
   ◆ Games during the Christmas season (assigned a 3)  
   ◆ Games until the All-Star break (given a 2)  
   ◆ Games leading into the play-offs (scored with a 3)   

 The first year Perez built his multiple-regression model, the 
dependent variable  y , which was a “potential premium revenue 
score,” yielded an  r  2  = .86 with this equation: 

   y = 14,996 + 10,801x1 + 23,397x2 + 10,784x3   

   Table   4.3   illustrates, for brevity in this case study, a sample 
of 12 games that year (out of the total 41 home game regular 
season), including the potential extra revenue per game ( y ) to be 
expected using the variable pricing model. 

 A leader in NBA variable pricing, the Orlando Magic have 
learned that regression analysis is indeed a profitable forecasting 
tool. 

   Discussion Questions  *    

    1. Use the data in   Table   4.3   to build a regression model with day 
of the week as the only independent variable.  

     Fe
rn

an
do

 M
ed

in
a   

   Forecasting Ticket Revenue for Orlando Magic Basketball Games   

 The immediate issue facing SWU, however, was not NCAA 
ranking. It was capacity. The existing SWU stadium, built in 
1953, has seating for 54,000 fans. The following table indicates 
attendance at each game for the past 6 years. 

 One of Flamm’s demands upon joining SWU had been a sta-
dium expansion, or possibly even a new stadium. With attendance 
increasing, SWU administrators began to face the issue head-on. 
Flamm had wanted dormitories solely for his athletes in the sta-
dium as an additional feature of any expansion. 

 SWU’s president, Dr. Joel Wisner, decided it was time for 
his vice president of development to forecast when the existing 
stadium would “max out.” The expansion was, in his mind, a 
given. But Wisner needed to know how long he could wait. He 
also sought a revenue projection, assuming an average ticket 
price of $50 in 2016 and a 5% increase each year in future prices. 

   Discussion Questions  

    1. Develop a forecasting model, justifying its selection over other 
techniques, and project attendance through 2017.  

   2. What revenues are to be expected in 2016 and 2017?  
   3. Discuss the school’s options.      

  * This integrated case study runs throughout the text. Other issues fac-
ing Southwestern’s football stadium include (A) managing the stadium 
project (  Chapter   3  ); (C) quality of facilities (  Chapter   6  ); (D) break-even 
analysis of food services (Supplement 7 Web site); (E) locating the 
new stadium (  Chapter   8   Web site); (F) inventory planning of football 
programs (  Chapter   12   Web site); and (G) scheduling of campus security 
offi  cers/staff  for game days (  Chapter   13   Web site). 

M04_HEIZ0422_12_SE_C04.indd   154M04_HEIZ0422_12_SE_C04.indd   154 14/12/15   9:54 am14/12/15   9:54 am



CHAPTER 4  | FORECASTING 155

2. Use the data to build a model with rating of the opponent as 
the sole independent variable.  

3. Using Perez’s multiple-regression model, what would be the 
additional sales potential of  a Thursday Miami Heat game 
played during the Christmas holiday?  

   4. What additional independent variables might you suggest to 
include in Perez’s model?      

     TABLE   4.3     Data for Last Year’s Magic Ticket Sales Pricing Model    

TEAM DATE * DAY OF WEEK * TIME OF YEAR RATING OF OPPONENT ADDITIONAL SALES POTENTIAL

Phoenix Suns November 4 Wednesday 0 0 $12,331

Detroit Pistons November 6 Friday 0 1 $29,004

Cleveland Cavaliers November 11 Wednesday 0 6 $109,412

Miami Heat November 25 Wednesday 0 3 $75,783

Houston Rockets December 23 Wednesday 3 2 $42,557

Boston Celtics January 28 Thursday 1 4 $120,212

New Orleans 
Pelicans

February 3 Monday 1 1 $20,459

L. A. Lakers March 7 Sunday 2 8 $231,020

San Antonio Spurs March 17 Wednesday 2 1 $28,455

Denver Nuggets March 23 Sunday 2 1 $110,561

NY Knicks April 9 Friday 3 0 $44,971

Philadelphia 76ers April 14 Wednesday 3 1 $30,257

*Day of week rated as 1 5 Monday, 2 5 Tuesday, 3 5 Wednesday, 4 5 Thursday, 5 5 Friday, 6 5 Saturday, 5 5 Sunday, 3 5 holiday.

 With the growth of Hard Rock Cafe—from one pub in London 
in 1971 to more than 145 restaurants in 60 countries today—came 
a corporatewide demand for better forecasting. Hard Rock uses 
long-range forecasting in setting a capacity plan and intermedi-
ate-term forecasting for locking in contracts for leather goods 
(used in jackets) and for such food items as beef, chicken, and 
pork. Its short-term sales forecasts are conducted each month, by 
cafe, and then aggregated for a headquarters view. 

 The heart of the sales forecasting system is the point-of-sale 
(POS) system, which, in effect, captures transaction data on nearly 
every person who walks through a cafe’s door. The sale of each 
entrée represents one customer; the entrée sales data are transmit-
ted daily to the Orlando corporate headquarters’ database. There, 
the financial team, headed by Todd Lindsey, begins the forecast 
process. Lindsey forecasts monthly guest counts, retail sales, ban-
quet sales, and concert sales (if applicable) at each cafe. The general 
managers of individual cafes tap into the same database to prepare 
a daily forecast for their sites. A cafe manager pulls up prior years’ 
sales for that day, adding information from the local Chamber of 
Commerce or Tourist Board on upcoming events such as a major 
convention, sporting event, or concert in the city where the cafe 
is located. The daily forecast is further broken into hourly sales, 
which drives employee scheduling. An hourly forecast of $5,500 
in sales translates into 19 workstations, which are further broken 
down into a specific number of waitstaff, hosts, bartenders, and 
kitchen staff. Computerized scheduling software plugs in people 
based on their availability. Variances between forecast and actual 
sales are then examined to see why errors occurred. 

    Video Case 
 Hard Rock doesn’t limit its use of forecasting tools to sales. 

To evaluate managers and set bonuses, a 3-year weighted moving 
average is applied to cafe sales. If cafe general managers exceed 
their targets, a bonus is computed. Todd Lindsey, at corporate 
headquarters, applies weights of 40% to the most recent year’s 
sales, 40% to the year before, and 20% to sales 2 years ago in 
reaching his moving average. 

 An even more sophisticated application of statistics is found in 
Hard Rock’s menu planning. Using multiple regression, manag-
ers can compute the impact on demand of other menu items if 
the price of one item is changed. For example, if the price of a 
cheeseburger increases from $7.99 to $8.99, Hard Rock can pre-
dict the effect this will have on sales of chicken sandwiches, pork 
sandwiches, and salads. Managers do the same analysis on menu 
placement, with the center section driving higher sales volumes. 
When an item such as a hamburger is moved off the center to one 
of the side flaps, the corresponding effect on related items, say 
french fries, is determined.   

HARD ROCK’S MOSCOW CAFE    a    

MONTH 1 2 3 4 5 6 7 8 9 10

 Guest count 
(in thousands) 21 24 27 32 29 37 43 43 54 66

 Advertising 
(in $ thousand) 14 17 25 25 35 35 45 50 60 60

     a    These fi gures are used for purposes of this case study.  

   Forecasting at Hard Rock Cafe   

  * You may wish to view the video that accompanies this case before 
answering these questions. 
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   Discussion Questions  *    

    1. Describe three different forecasting applications at Hard Rock. 
Name three other areas in which you think Hard Rock could 
use forecasting models.  

   2. What is the role of  the POS system in forecasting at Hard 
Rock?  

   3. Justify the use of  the weighting system used for evaluating 
managers for annual bonuses.  

   4. Name several variables besides those mentioned in the case that 
could be used as good predictors of daily sales in each cafe.  

   5. At Hard Rock’s Moscow restaurant, the manager is trying to 
evaluate how a new advertising campaign affects guest counts. 
Using data for the past 10 months (see the table), develop a 
least-squares regression relationship and then forecast the 
expected guest count when advertising is $65,000.    

  * You may wish to view the video that accompanies this case before 
answering these questions. 

     • Additional Case Studies:  Visit MyOMLab for these free case studies: 
     North-South Airlines:    Refl ects the merger of two airlines and addresses their maintenance costs.  
    Digital Cell Phone, Inc.:    Uses regression analysis and seasonality to forecast demand at a cell phone manufacturer.       

     Endnotes   

      1.   For a good review of  statistical terms, refer to Tutorial 1, 
“Statistical Review for Managers,” in MyOMLab  .  

     2.   When the sample size is large ( n  7  30), the prediction inter-
val value of  y  can be computed using normal tables. When the 
number of observations is small, the  t -distribution is appropri-
ate. See D. Groebner et al.,  Business Statistics , 9th ed. (Upper 
Saddle River, NJ: Prentice Hall, 2014).  

     3.   To prove these three percentages to yourself, just set up a 
normal curve for  {  1.6 standard deviations ( z -values). Using 
the normal table in   Appendix   I  , you find that the area under 
the curve is .89. This represents  {  2 MADs. Likewise,  {  3 
MADs = {  2.4 standard deviations encompass 98% of  the 
area, and so on for  {  4 MADs.  

     4.   Bernard T. Smith,  Focus Forecasting: Computer Techniques for 
Inventory Control  (Boston: CBI Publishing, 1978).    
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Main Heading Review Material MyOMLab
 WHAT IS 
FORECASTING? 
(pp.  108 – 109 ) 

    j  Forecasting—   The art and science of predicting future events.  
   j  Economic forecasts—   Planning indicators that are valuable in helping organiza-

tions prepare medium- to long-range forecasts.  
   j  Technological forecasts—   Long-term forecasts concerned with the rates of tech-

nological progress.  
   j  Demand forecasts—   Projections of a company’s sales for each time period in the 

planning horizon.   

Concept Questions: 
1.1–1.4

 THE STRATEGIC 
IMPORTANCE OF 
FORECASTING 
(pp.  109 – 110 ) 

 The forecast is the only estimate of demand until actual demand becomes known.  
Forecasts of demand drive decisions in many areas, including: human resources, 
capacity, and supply chain management.

Concept Questions: 
2.1–2.3

 SEVEN STEPS IN THE 
FORECASTING SYSTEM 
(pp.  110 – 111 ) 

j  Forecasting follows seven basic steps: (1) Determine the use of the forecast;
(2) Select the items to be forecasted; (3) Determine the time horizon of the 
forecast; (4) Select the forecasting model(s); (5) Gather the data needed to make 
the forecast; (6) Make the forecast; (7) Validate and implement the results.

Concept Questions: 
3.1–3.4

 FORECASTING 
APPROACHES 
(pp.  111 – 112 ) 

    j  Quantitative forecasts   —Forecasts that employ mathematical modeling to fore-
cast demand.  

   j  Qualitative forecast   —Forecasts that incorporate such factors as the decision 
maker’s intuition, emotions, personal experiences, and value system.  

   j  Jury of executive opinion   —Takes the opinion of a small group of high-level 
managers and results in a group estimate of demand.  

   j  Delphi method   —Uses an interactive group process that allows experts to make 
forecasts.  

   j  Sales force composite   —Based on salespersons’ estimates of expected sales.  
   j  Market survey   —Solicits input from customers or potential customers regarding 

future purchasing plans.  
   j  Time series   —Uses a series of past data points to make a forecast.   

Concept Questions: 
4.1–4.4

 TIME-SERIES 
FORECASTING 
(pp.  112 – 131 ) 

    j  Naive approach   —Assumes that demand in the next period is equal to demand in 
the most recent period.  

   j  Moving average   —Uses an average of the n most recent periods of data to fore-
cast the next period. 

    Moving average =
gdemand in previous n periods

 n
   (4-1)   

   Weighted moving average =
g((Weight for period n)(Demand in period n))

gWeights
   (4-2)    

   j  Exponential smoothing   —A weighted-moving-average forecasting technique in 
which data points are weighted by an exponential function.  

   j  Smoothing constant   —The weighting factor, a, used in an exponential smooth-
ing forecast, a number between 0 and 1. 

 Exponential smoothing formula: 
    Ft =  Ft - 1 + a(At - 1 - Ft - 1)   (4-4)    
   j  Mean absolute deviation (MAD)   —A measure of the overall forecast error for a 

model. 

    MAD =
g 0Actual - Forecast 0

n
   (4-5)    

   j  Mean squared error (MSE)   —The average of the squared differences between 
the forecast and observed values. 

    MSE =
g(Forecast errors)2

 n
   (4-6)    

   j  Mean absolute percent error (MAPE)   —The average of the absolute differences 
between the forecast and actual values, expressed as a percentage of actual 
values. 

    MAPE =
a

n

i = 1
100 0Actuali - Forecasti 0 /Actuali

 n
    (4-7)     

 Concept Questions: 
5.1–5.4
Problems: 4.1–4.42 
 Virtual Office Hours 
for Solved Problems: 
4.1–4.4 

 ACTIVE MODELS 4.1–4.4 

    Chapter   4     Rapid  Review     
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 Exponential smoothing with trend adjustment 
   Forecast including trend (FITt) =  Exponentially smoothed forecast average (Ft)
 + Exponentially smoothed trend (Tt)   (4-8)   
    j  Trend projection   —A time-series forecasting method that fits a trend line to a series 

of historical data points and then projects the line into the future for forecasts. 
 Trend projection and regression analysis 

   ny = a + bx, where b =
gxy - nx y
 gx2 - nx 2

 and a = y - bx   (4-11), (4-12), (4-13)    

   j  Seasonal variations   —Regular upward or downward movements in a time series 
that tie to recurring events.  

   j  Cycles   —Patterns in the data that occur every several years.   

Virtual Office Hours 
for Solved Problems: 
4.5–4.6

 ASSOCIATIVE 
FORECASTING 
METHODS: 
REGRESSION AND 
CORRELATION 
ANALYSIS
(pp.  131 – 137 ) 

    j  Linear-regression analysis   —A straight-line mathematical model to describe the 
functional relationships between independent and dependent variables.  

   j  Standard error of the estimate   —A measure of variability around the regression 
line.  

   j  Coefficient of correlation   —A measure of the strength of the relationship 
between two variables.  

   j  Coefficient of determination   —A measure of the amount of variation in the 
dependent variable about its mean that is explained by the regression equation.  

   j  Multiple regression   —An associative forecasting method with . 1 independent 
variable. 

    Multiple regression forecast: yn = a + b1x1 + b2x2   (4-17)     

 Concept Questions: 
6.1–6.4
Problems: 4.43-4.58 
 VIDEO 4.1 
 Forecasting Ticket Rev-
enue for Orlando Magic 
Basketball Games
Virtual Office Hours 
for Solved Problems: 
4.7–4.8 

 MONITORING AND 
CONTROLLING FORE-
CASTS (pp.  138 – 140 ) 

    j  Tracking signal   —A measurement of how well the forecast is predicting actual 
values. 

   Tracking signal =
g(Actual demand in period i -  Forecast demand in period i )

 MAD
   (4-18)    

   j  Bias   —A forecast that is consistently higher or lower than actual values of a 
time series.  

   j  Adaptive smoothing   —An approach to exponential smoothing forecasting in 
which the smoothing constant is automatically changed to keep errors to a 
minimum.  

   j  Focus forecasting   —Forecasting that tries a variety of computer models and 
selects the best one for a particular application.   

Concept Questions: 
7.1–7.4
Problems: 4.59–4.61

 FORECASTING IN 
THE SERVICE SECTOR 
(pp.  140 – 141 ) 

Service-sector forecasting may require good short-term demand records, even per 
15-minute intervals. Demand during holidays or specific weather events may also 
need to be tracked.

 Concept Question: 8.1
VIDEO 4.2 
 Forecasting at Hard 
Rock Cafe 
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Chapter 4 Rapid Review continued

       LO 4.1    Forecasting time horizons include: 
    a) long range.      b) medium range.  
   c) short range.      d) all of the above.     
      LO 4.2    Qualitative methods of forecasting include: 
    a) sales force composite.      b) jury of executive opinion.  
   c) consumer market survey.     d) exponential smoothing.  
   e) all except (d).     
      LO 4.3     The difference between a  moving-average  model and an 

 exponential smoothing  model is that   .   
      LO 4.4    Three popular measures of forecast accuracy are: 
    a) total error, average error, and mean error.  
   b) average error, median error, and maximum error.  
   c) median error, minimum error, and maximum absolute error.  
   d)  mean absolute deviation, mean squared error, and mean 

absolute percent error.     

      LO 4.5     Average demand for iPods in the Rome, Italy, Apple store is 
800 units per month. The May monthly index is 1.25. What is 
the seasonally adjusted sales forecast for May? 

    a) 640 units     b) 798.75 units  
   c) 800 units     d) 1,000 units  
   e) cannot be calculated with the information given     
      LO 4.6     The main difference between simple and multiple regression is 

  .   
      LO 4.7    The tracking signal is the: 
    a) standard error of the estimate.  
   b) cumulative error.  
   c) mean absolute deviation (MAD).  
   d) ratio of the cumulative error to MAD.  
   e) mean absolute percent error (MAPE).       

     Self  Test   
    j Before taking the self-test,    refer to the learning objectives listed at the beginning of the chapter and the key terms listed at the end of the chapter.   

  Answers: LO 4.1. d; LO 4.2. e; LO 4.3. exponential smoothing is a weighted moving-average model in which all prior values are weighted with a set 
of exponentially declining weights; LO 4.4. d; LO 4.5. d; LO 4.6. simple regression has only one independent variable; LO 4.7. d.        
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