11

Material Requirements Planning (MRP) and ERP

PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition Principles of Operations Management, Ninth Edition

When you complete this chapter you should be able to:

- **1. Develop** a product structure
- 2. Build a gross requirements plan
- 3. Build a net requirements plan
- 4. Determine lot sizes for lot-for-lot, EOQ, and POQ
- 5. Describe MRP II
- 6. Describe closed-loop MRP
- 7. Describe ERP

MRP for Wheeled Coach

- Largest manufacturer of ambulances in the world
- International competitor
- 12 major ambulance designs
 - 18,000 different inventory items
 - 6,000 manufactured parts
 - 12,000 purchased parts

MRP for Wheeled Coach

Four Key Tasks

- Material plan must meet both the requirements of the master schedule and the capabilities of the production facility
- Plan must be executed as designed
- Minimize inventory investment
- Maintain excellent record integrity

Dependent Demand

For any product for which a schedule can be established, dependent demand techniques should be used

Benefits of MRP

- 1. Better response to customer orders
- 2. Faster response to market changes
- **3.** Improved utilization of facilities and labor
- 4. Reduced inventory levels

- The demand for one item is related to the demand for another item
- Given a quantity for the end item, the demand for all parts and components can be calculated
- In general, used whenever a schedule can be established for an item
- MRP is the common technique

Effective use of dependent demand inventory models requires the following

- 1. Master production schedule
- 2. Specifications or bill of material
- 3. Inventory availability
- 4. Purchase orders outstanding
- 5. Lead times

Master Production Schedule (MPS)

- Specifies what is to be made and when
- Must be in accordance with the aggregate production plan
- Inputs from financial plans, customer demand, engineering, supplier performance
- As the process moves from planning to execution, each step must be tested for feasibility
- The MPS is the result of the production planning process

Master Production Schedule (MPS)

- MPS is established in terms of specific products
- Schedule must be followed for a reasonable length of time
- The MPS is quite often fixed or frozen in the near term part of the plan
- The MPS is a rolling schedule
- The MPS is a statement of what is to be produced, not a forecast of demand

The Planning Process

The Planning Process

The Planning Process

Aggregate Production Plan

Months	January				February				
Aggregate Plan (Shows the total quantity of amplifiers)	1,500				1,200				
Weeks	1	2	3	4	5	6	7	8	
Master Production Schedule (Shows the specific type and quantity of amplifier to be produced									
240-watt amplifier	100		100		100		100		
150-watt amplifier		500		500		450		450	
75-watt amplifier			300				100		

Can be expressed in any of the following terms:

- 1. A *customer order* in a job shop (make-toorder) company
- Modules in a repetitive (assemble-to-order or forecast) company
- **3**. An *end item* in a continuous (stock-to-forecast) company

MPS Example

TABLE 14.1Master Production Schedule for Chef John's Buffalo Chicken Mac & Cheese										
GROSS REQUIREMENTS FOR CHEF JOHN'S BUFFALO MAC & CHEESE										
Day	6	7	8	9	10	11	12	13	14	And so on
Quantity	450		200	350	525		235	375		

- List of components, ingredients, and materials needed to make product
- Provides product structure
 - Items above given level are called parents
 - Items below given level are called components or children

BOM Example

BOM Example

For an order of 50 Awesome speaker kits

Part B:	2 x number of As =	(2)(50) =	100
Part C:	3 x number of As =	(3)(50) =	150
Part D:	2 x number of Bs		
	+ 2 x number of Fs =	(2)(100) + (2)(300) =	800
Part E:	2 x number of Bs		
	$+ 2 \times \text{number of Cs} =$	(2)(100) + (2)(150) =	500
Part F:	2 x number of Cs =	(2)(150) =	300
Part G:	1 x number of Fs =	(1)(300) =	300

D₍₂₎

G₍₁₎

Modular Bills

- Modules are not final products but components that can be assembled into multiple end items
- Can significantly simplify planning and scheduling

Planning Bills

- Also called "pseudo" or super bills
- Created to assign an artificial parent to the BOM
- Used to group subassemblies to reduce the number of items planned and scheduled
- Used to create standard "kits" for production

Phantom Bills

- Describe subassemblies that exist only temporarily
- Are part of another assembly and never go into inventory
- Low-Level Coding
 - Item is coded at the lowest level at which it occurs
 - BOMs are processed one level at a time

Accurate Inventory Records

- Accurate inventory records are absolutely required for MRP (or any dependent demand system) to operate correctly
- Generally MRP systems require more than 99% accuracy

MRP Structure

Gross Requirements Plan

TABLE	TABLEGross Material Requirements Plan for 50 Awesome Speaker Kits (As)with Order Release Dates Also Shown									
					WE	EK				LEAD
		1	2	3	4	5	6	7	8	TIME
A. Required d	ate								50	
Order relea	ase date							50		1 week
B. Required d	ate							100		
Order relea	ase date					100				2 weeks
C. Required d	ate							150		
Order relea	ase date						150			1 week
E. Required d	ate					200	300			
Order relea	ase date			200	300					2 weeks
F. Required d	ate						300			
Order relea	ase date			300						3 weeks
D. Required d	ate			600		200				
Order relea	ase date		600		200					1 week
G. Required d	ate			300						
Order relea	ase date	300								2 weeks

Safety Stock

- BOMs, inventory records, purchase and production quantities may not be perfect
- Consideration of safety stock may be prudent
- Should be minimized and ultimately eliminated
- Typically built into projected on-hand inventory

MRP Management

MRP dynamics

- Facilitates replanning when changes occur
- System nervousness can result from too many changes
- Time fences put limits on replanning
- Pegging links each item to its parent allowing effective analysis of changes

MRP Management

- MRP limitations
 - MRP does not do detailed scheduling—it plans
 - Works best in product-focused, repetitive environments
 - Requires fixed lead time and infinite size time buckets

Extensions of MRP

- MRP II
- Closed-Loop MRP
- Capacity Planning

Material Requirements Planning II

- Requirement data can be enriched by other resources
- Generally called MRP II or Material Resource Planning
- Outputs can include scrap, packaging waste, effluent, carbon emissions

 Data used by purchasing, production scheduling, capacity planning, inventory, warehouse management

Material Resource Planning

TABLE Material Resource Plan	Material Resource Planning (MRP II)									
		Weeks								
	LT	5		6	7		8			
Computer	1						100			
Labor Hrs: .2 each							20			
Machine Hrs: .2 each							20			
Scrap: 1 ounce fiberglass each							6.25	lb		
Payables: \$0 each							\$0			
PC Board (1 each)	2				100					
Labor Hrs: .15 each					15					
Machine Hrs: .1 each					10					
Scrap: .5 ounces copper each					3.125	lb				
Payables: raw material at \$5 each					\$500					
Processors (5 each)	4	500								
Labor Hrs: .2 each		100								
Machine Hrs: .2 each		100								
Scrap: .01 ounces of acid waste each		0.3125	lb							
Payables: processors at \$10 each		\$5,000								

Closed-Loop MRP System

Capacity Planning

- Feedback from the MRP system
- Load reports show resource requirements for work centers
- Work can be moved between work centers to smooth the load or bring it within capacity

MRP in Services

- Some services or service items are directly linked to demand for other services
- These can be treated as dependent demand services or items
 - Restaurants
 - Hospitals
 - Hotels

MRP in Services

MRP in Services

(b) BILL OF MATERIALS

Production Specifications	Buffalo Chicken Mac & Cheese (6 portions)							
Ingredients	Quantity	Measure	Unit Cost	Total Cost	Labor Hrs.			
Elbow Macaroni (large, uncooked)	20.00	OZ.	\$ 0.09	\$ 1.80				
Cheese-Pepper Jack (grated)	10.00	OZ.	0.17	1.70				
Mac and Cheese Base (from refrigerator)	32.00	oz.	0.80	25.60				
Milk	4.00	oz.	0.03	0.12				
Smoked Pulled Chicken	2.00	lb.	2.90	5.80				
Buffalo Sauce	8.00	oz.	0.09	0.72				
Blue Cheese Crumbles	4.00	oz.	0.19	0.76				
Scallions	2.00	oz.	0.18	0.36				
					0.2 hrs			

Distribution Resource Planning (DRP)

Using dependent demand techniques through the supply chain

- Expected demand or sales forecasts become gross requirements
- All other levels are computed
- DRP pulls inventory through the system
- Small and frequent replenishments

Enterprise Resource Planning (ERP)

- An extension of the MRP system to tie in customers and suppliers
 - 1. Allows automation and integration of many business processes
 - 2. Shares common data bases and business practices
 - 3. Produces information in real time
- Coordinates business from supplier evaluation to customer invoicing

Enterprise Resource Planning (ERP)

- ERP modules include
 - Basic MRP
 - Finance
 - Human resources
 - Supply chain management (SCM)
 - Customer relationship management (CRM)
 - Sustainability

Enterprise Resource Planning (ERP)

- ERP systems have the potential to
 - Reduce transaction costs
 - Increase the speed and accuracy of information
- Facilitates a strategic emphasis on JIT systems and supply chain integration
- Can be expensive and time-consuming to install

SAP's ERP Modules

Covers all financial related activity	CASH TO CASH						
Accounts receivable Accounts payable	General ledger Treasury	Cash management Asset management					
PROMOTE TO DELIVER Covers front-end customer-oriented activities: Marketing Quote and order processing Transportation Documentation and labeling After sales service Warranty and guarantees	DESIGN TO MANUFACTURECovers internal production activities:Design engineering Production engineering Plant maintenanceShop floor reporting Contract/project managementPlant maintenanceSubcontractor managementSubcontractor managementSubcontractor managementERECRUIT TO RETIRE Covers all HR- and payroll-oriented activity:Time and attendancePayrollTravel and expensesPayroll	PROCURE TO PAY Covers sourcing activities: Vendor sourcing Purchase requisitioning Purchase ordering Purchase contracts Inbound logistics Supplier invoicing/matching Supplier payment/ settlement Supplier performance					
DOCK TO DISPATCH							
Covers internal inventory manage Warehousing Distribution planning	ment: Forecasting Replenishment planning	Physical inventory Material handling					

ERP in the Service Sector

- ERP systems have been developed for health care, government, retail stores, hotels, and financial services
- Also called efficient consumer response (ECR) systems
- Objective is to tie sales to buying, inventory, logistics, and production

Short-Term Scheduling

The objective of scheduling is to allocate and prioritize demand (generated by either forecasts or customer orders) to available facilities

Importance of Short-Term Scheduling

- Effective and efficient scheduling can be a competitive advantage
 - Faster movement of goods through a facility means better use of assets and lower costs
 - Additional capacity resulting from faster throughput improves customer service through faster delivery
 - Good schedules result in more dependable deliveries

Scheduling Issues

- Scheduling deals with the timing of operations
- The task is the allocation and prioritization of demand
- Significant factors are
 - 1. Forward or backward scheduling
 - 2. Finite or infinite loading
 - 3. The criteria for sequencing jobs

Scheduling Decisions

TABLE	Schedu	Scheduling Decisions					
ORGANIZATION	J	MANAGERS SCHEDULE THE FOLLOWING					
Delta Air Lines		Maintenance of aircraft Departure timetables Flight crews, catering, gate, ticketing personnel					
Arnold Palmer Hospital		Operating room use Patient admissions Nursing, security, maintenance staffs Outpatient treatments					
University of Ala	bama	Classrooms and audiovisual equipment Student and instructor schedules Graduate and undergraduate courses					
Amway Center		Ushers, ticket takers, food servers, security personnel Delivery of fresh foods and meal preparation Orlando Magic games, concerts, arena football					
Lockheed Martin Factory		Production of goods Purchases of materials Workers					

Capacity Planning

(Long term; years) Changes in Facilities Changes in Equipment See Chapter 7 and Supplement 7

Aggregate Planning

(Intermediate term; quarterly or monthly) Facility utilization Personnel changes Subcontracting *See Chapter 13*

Master Schedule

(Intermediate term; weekly) Material requirements planning Disaggregate the aggregate plan See Chapters 13 and 14

Short Term Scheduling (Short term; days, hours, minutes) Work center loading Job sequencing/dispatching See this chapter

Capacity Plan for New Facilities Adjust capacity to the demand suggested by strategic plan

Scheduling Flow

Aggregate Production Plan for All Bikes

(Determine personnel or subcontracting necessary to match aggregate demand to existing facilities/capacity)

Month	1	2
Bike Production	800	850

Master Production Schedule for Bike Models

(Determine weekly capacity schedule)

	Month 1				Month 2			
Week	1	2	3	4	5	6	7	8
Model 22		200		200		200		200
Model 24	100		100		150		100	
Model 26	100		100		100		100	

Work Assigned to Specific Personnel and Work Centers

Make finite capacity schedule by matching specific tasks to specific people and machines

Assemble Model 22 in work center 6

Forward and Backward Scheduling

- Forward scheduling starts as soon as the requirements are known
- Produces a feasible schedule though it may not meet due dates
- Frequently results in buildup of work-inprocess inventory

Forward and Backward Scheduling

- Backward scheduling begins with the due date and schedules the *final* operation first
- Schedule is produced by working backwards though the processes
- Resources may not be available to accomplish the schedule

Forward and Backward Scheduling

Finite and Infinite Loading

- Assigning jobs to work stations
- Finite loading assigns work up to the capacity of the work station
 - All work gets done
 - Due dates may be pushed out
- Infinite loading does not consider capacity
 - All due dates are met
 - Capacities may have to be adjusted

Scheduling Criteria

- **1**. Minimize completion time
- 2. Maximize utilization of facilities
- 3. Minimize work-in-process (WIP) inventory
- 4. Minimize customer waiting time

Different Processes/ Different Approaches

TABLEDifferent Processes Suggest Different Approaches to
Scheduling

Process-focused facilities (job shops)

- Scheduling to customer orders where changes in both volume and variety of jobs/clients/patients are frequent
- Schedules are often due-date focused, with loading refined by finite loading techniques
- Examples: foundries, machine shops, cabinet shops, print shops, many restaurants, and the fashion industry

Repetitive facilities (assembly lines)

- Schedule module production and product assembly based on frequent forecasts
- ► Finite loading with a focus on generating a forward-looking schedule
- JIT techniques are used to schedule components that feed the assembly line
- Examples: assembly lines for washing machines at Whirlpool and automobiles at Ford.

Different Processes/ Different Approaches

TABLEDifferent Processes Suggest Different Approaches to
Scheduling

Product-focused facilities (continuous)

- Schedule high volume finished products of limited variety to meet a reasonably stable demand within existing fixed capacity
- Finite loading with a focus on generating a forward-looking schedule that can meet known setup and run times for the limited range of products
- Examples: huge paper machines at International Paper, beer in a brewery at Anheuser-Busch, and potato chips at Frito-Lay

Focus for Different Process Strategies

Scheduling Process-Focused Facilities

- High-variety, low volume
- Production differ considerably
- Schedule incoming orders without violating capacity constraints
- Scheduling can be complex

