

Manajemen PERSEDIAAN

PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition Principles of Operations Management, Ninth Edition

PowerPoint slides by Jeff Heyl

The top e-commerce companies in Indonesia

- e-commerce companies started as a "virtual" retailer – no inventory, no warehouses, no overhead; just computers taking orders to be filled by others
- Growth has forced to become e-commerce companies leader on Indonesian

Express Courier & Delivery Services

- Courier services operate on all scales, from within specific towns or cities, to regional, national and global services.
- Large courier companies include DHL, Postaplus, DTDC, FedEx, EMS International, TNT, UPS, India Post and Aramex. These offer services worldwide, typically via a hub and spoke model.
- In Indonesia, JNE, TIKI, J&T, Dakota, Lions Express, etc.
- Couriers services utilizing Courier Software provide electronic Proof of Delivery and electronic Tracking details.

INVENTORY MANAGEMENT

The objective of inventory management is to strike a balance between inventory investment and customer service

- One of the most expensive assets of many companies representing as much as 50% of total invested capital
- Operations managers must balance inventory investment and customer service
- Balance the advantages and disadvantages of small and large inventories

Importance of Inventory

Pressures for small inventories

- Inventory holding cost
- Cost of capital
- Storage and handling costs
- Taxes, insurance, and shrinkage

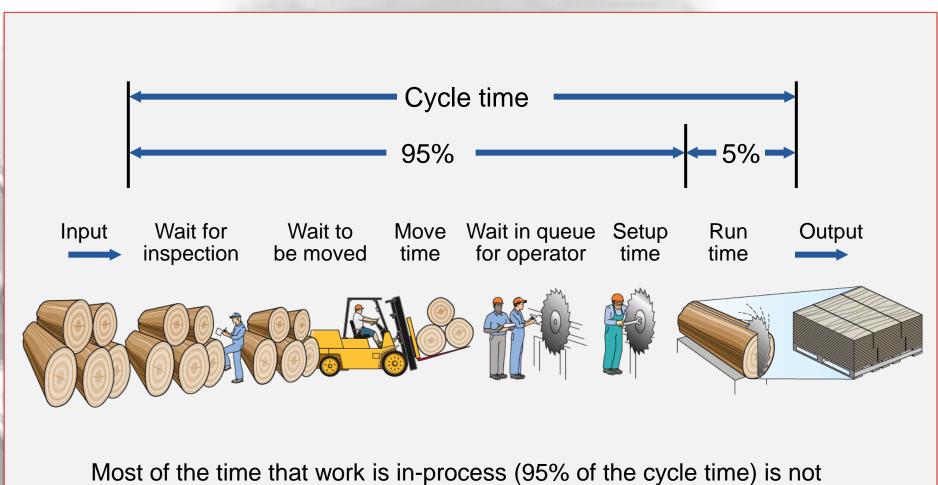
Pressures for large inventories

- Customer service
- Ordering cost
- Setup cost
- Labor and equipment utilization
- Transportation cost
- Payments to suppliers

Functions of Inventory

- To provide a selection of goods for anticipated demand and to separate the firm from fluctuations in demand
- 2. To decouple or separate various parts of the production process
- 3. To take advantage of quantity discounts
- 4. To hedge against inflation

Reasons for Holding Inventory


- To meet anticipated customer demand
 - To protect against stock outs
- To take advantage of economic ordercycles
 - To maintain independence of operations
- To allow for smooth and flexible production operations
- To guard against price increases

Types of Inventory

- Raw material
 - Purchased but not processed
- Work-in-process (WIP)
 Undergone some change but not completed
 A function of cycle time for a product
- Maintenance/repair/operating (MRO)
 Necessary to keep machinery and processes productive
- Finished goods
 - Completed product awaiting shipment

The Material Flow Cycle

st of the time that work is in-process (95% of the cycle time) is n productive time.

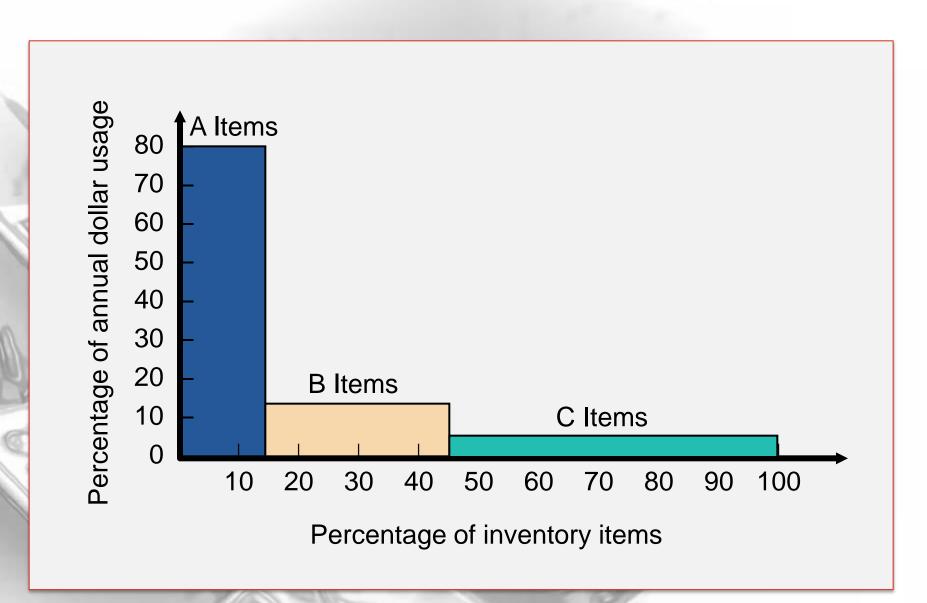
Managing Inventory (ABC analysis)

- 1. How inventory items can be classified (*ABC analysis*)
- 2. How accurate inventory records can be maintained.
- 3. Stock-keeping units (SKU)
- 4. Identify the classes so management can control inventory levels
- 5. A Pareto chart

A\

- Divides inventory into three classes based on annual dollar volume
 - Class A high annual dollar volume
 - Class B medium annual dollar volume
 - Class C low annual dollar volume
- Used to establish policies that focus on the few critical parts and not the many trivial ones

ABC Analysis

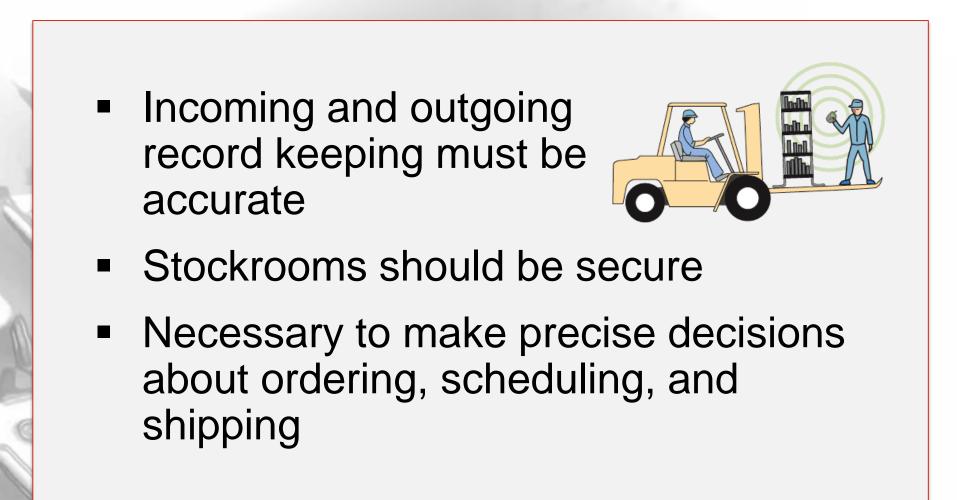

ABC Calc	ulation						
(1)	(2)	(3)	(4)	(5)	(6)		(7)
ITEM STOCK NUMBER	PERCENT OF NUMBER OF ITEMS STOCKED	ANNUAL VOLUME (UNITS)	UNIT x COST	ANNUAL DOLLAR = VOLUME	PERCENT OF ANNUAL DOLLAR VOLUME		CLASS
#10286	20%	1,000	\$ 90.00	\$ 90,000	38.8%		Α
#11526		500	154.00	77,000	33.2%	72%	A
#12760		1,550	17.00	26,350	11.3%		В
#10867	30%	350	42.86	15,001	6.4%	23%	В
#10500		1,000	12.50	12,500	5.4%	J	В
#12572		600	\$ 14.17	\$ 8,502	3.7%)	С
#14075		2,000	.60	1,200	.5%		С
#01036	50%	100	8.50	850	.4%	5%	С
#01307		1,200	.42	504	.2%		С
#10572		250	.60	150	.1%		С
		8,550		\$232,057	100.0%		

÷

Institut Informatika & Bisnis

A/

ABC Analysis


ABC Analysis

- Other criteria than annual dollar volume may be used
 - 1. High shortage or holding cost
 - 2. Anticipated engineering changes
 - 3. Delivery problems
 - 4. Quality problems
- Policies employed may include
 - 1. More emphasis on supplier development for A items
 - 2. Tighter physical inventory control for A items
 - 3. More care in forecasting A items

Record Accuracy

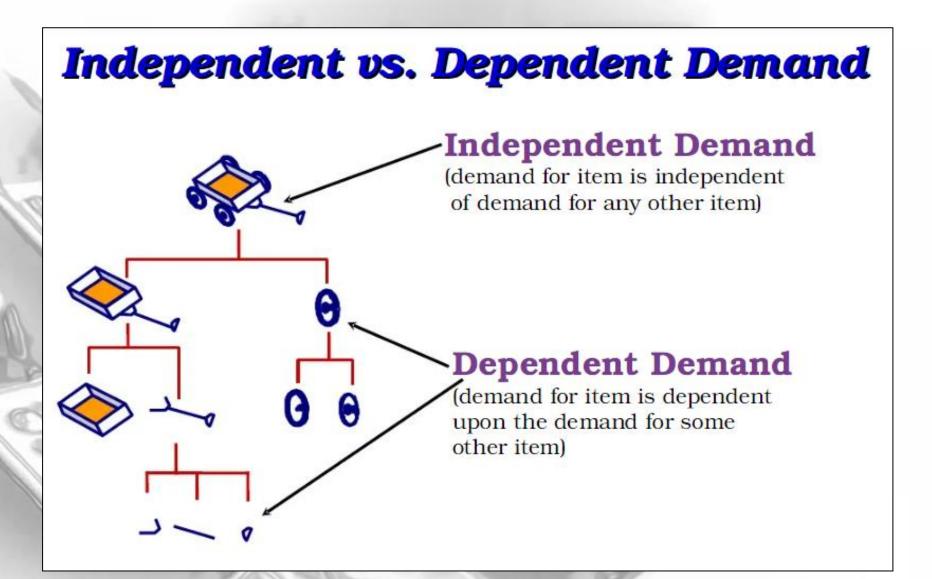
- Accurate records are a critical ingredient in production and inventory systems
 - Periodic systems require regular checks of inventory
 - > Two-bin system
 - Perpetual inventory tracks receipts and subtractions on a continuing basis
 - May be semi-automated

Record Accuracy

Control of Service Inventories

- Can be a critical component of profitability
- Losses may come from shrinkage or pilferage

- Applicable techniques include
 - 1. Good personnel selection, training, and discipline
 - 2. Tight control of incoming shipments
 - 3. Effective control of all goods leaving facility


INVENTORY MODELS

the Informatika & Richi

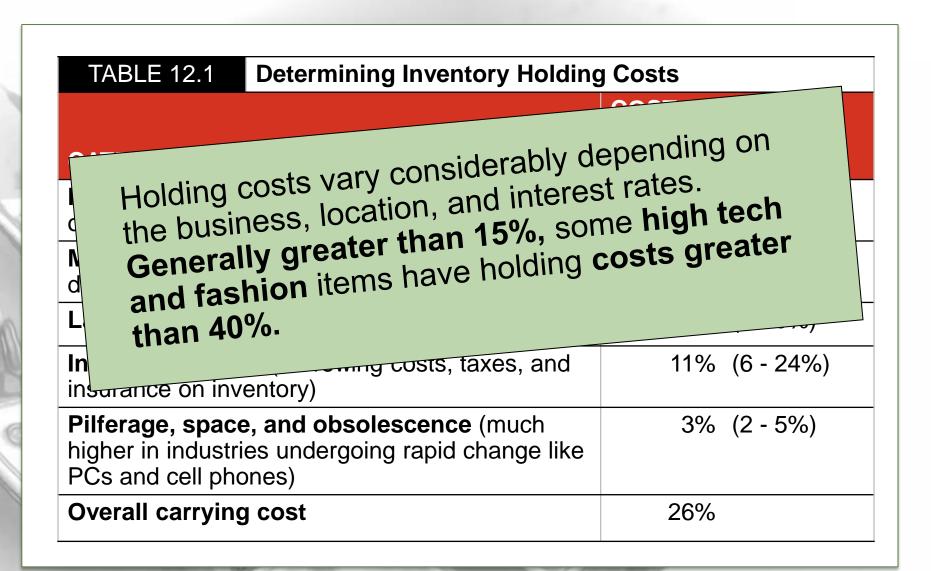
- Independent demand the demand for item is independent of the demand for any other item in inventory
- Dependent demand the demand for item is dependent upon the demand for some other item in the inventory

INVENTORY MODELS

etitut Informatika 2. Rienie

INVENTORY MODELS

titut Informatika 2. Dienie


- Holding costs the costs of holding or "carrying" inventory over time
- Ordering costs the costs of placing an order and receiving goods
- Setup costs cost to prepare a machine or process for manufacturing an order
 - May be highly correlated with setup time

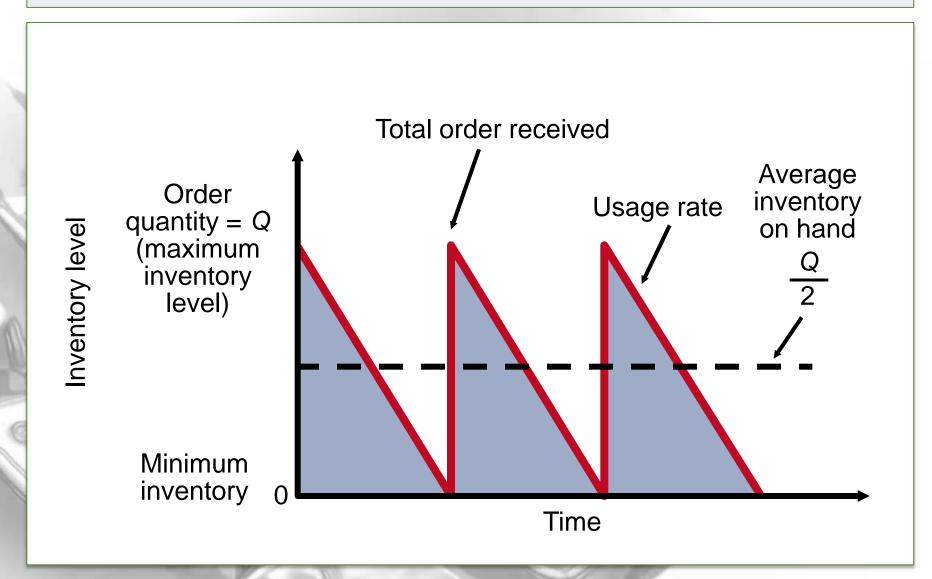
Holding Costs

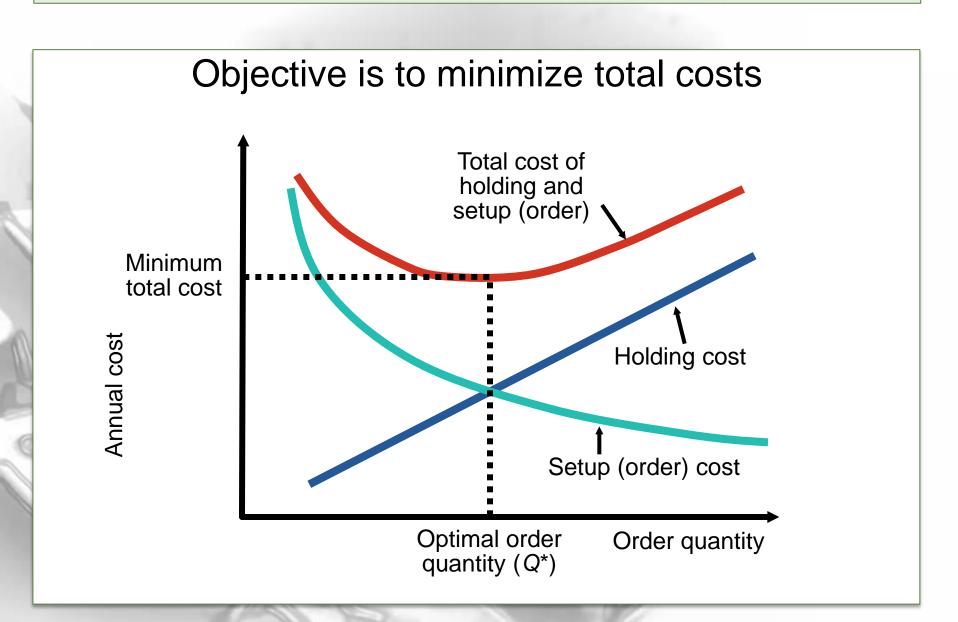
Α

TABLE Determining Inventory Holding	ng Inventory Holding Costs			
CATEGORY	COST (AND RANGE) AS A PERCENT OF INVENTORY VALUE			
Housing costs (building rent or depreciation, operating costs, taxes, insurance)	6% (3 - 10%)			
Material handling costs (equipment lease or depreciation, power, operating cost)	3% (1 - 3.5%)			
Labor cost (receiving, warehousing, security)	3% (3 - 5%)			
Investment costs (borrowing costs, taxes, and insurance on inventory)	11% (6 - 24%)			
Pilferage, space, and obsolescence (much higher in industries undergoing rapid change like PCs and cell phones)	3% (2 - 5%)			
Overall carrying cost	26%			

Holding Costs

Need to determine when and how much to order


- Basic economic order quantity (EOQ) model
- 2. Production order quantity model
- 3. Quantity discount model


BASIC EOQ MODEL

Important assumptions

- 1. Demand is known, constant, and independent
- 2. Lead time is known and constant
- 3. Receipt of inventory is instantaneous and complete
- 4. Quantity discounts are not possible
- 5. Only variable costs are setup (or ordering) and holding
- 6. Stockouts can be completely avoided

INVENTORY USAGE OVER TIME (EOQ MODEL)

- By minimizing the sum of setup (or ordering) and holding costs, total costs are minimized
- Optimal order size Q* will minimize total cost
- A reduction in either cost reduces the total cost
- Optimal order quantity occurs when holding cost and setup cost are equal

- Q = Number of pieces per order
- Q^* = Optimal number of pieces pe

Annual setup cost = $\frac{D}{Q}S$

- D = Annual demand in units for the inventory item
- S = Setup or ordering cost for each order
- H = Holding or carrying cost per unit per year

Annual setup cost = (Number of orders placed per year) x (Setup or order cost per order)

- Q = Number of pieces per order
- Q^* = Optimal number of pieces pe
 - D = Annual demand in units for th Annual holding cost =
 - S =Setup or ordering cost for each order
 - H = Holding or carrying cost per unit per year

Annual holding cost = (Average inventory level) x (Holding cost per unit per year)

$$= \left(\frac{\text{Order quantity}}{2} \right) \text{(Holding cost per unit per year)}$$
$$= \mathop{\mathbb{Q}}_{\check{e}} \frac{Q}{2} \mathop{\mathbb{Q}}_{\check{\varphi}}^{\ddot{0}} H$$

ł

 $\frac{\tilde{Q}}{\tilde{Q}}_{H}$

Annual setup cost = $\frac{D}{O}S$

Annual setup cost = $\frac{D}{Q}S$

Annual holding cost = $\frac{\tilde{Q}}{2}H$

- Q = Number of pieces per order
- Q^* = Optimal number of pieces pe
 - D = Annual demand in units for the theorem of the second second
 - S =Setup or ordering cost for each order
 - H = Holding or carrying cost per unit per year

Optimal order quantity is found when annual setup cost equals annual holding cost

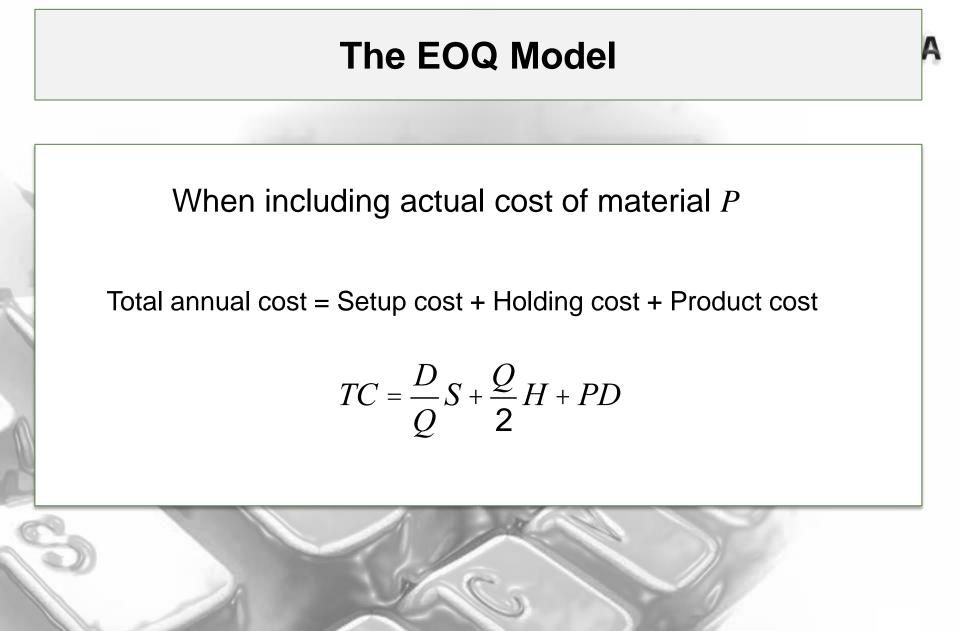
$$\frac{D}{Q}S = \mathop{\bigotimes}\limits_{e}^{\frac{a}{2}} \underbrace{\frac{Q}{2}}_{e}^{\stackrel{o}{\circ}} H$$
Solving for Q^*

$$2DS = Q^2 H$$

$$Q^2 = \frac{2DS}{H}$$

$$Q^* = \sqrt{\frac{2DS}{H}}$$

Determine optimal number of needles to order D = 1,000 units S = \$10 per order H = \$.50 per unit per year

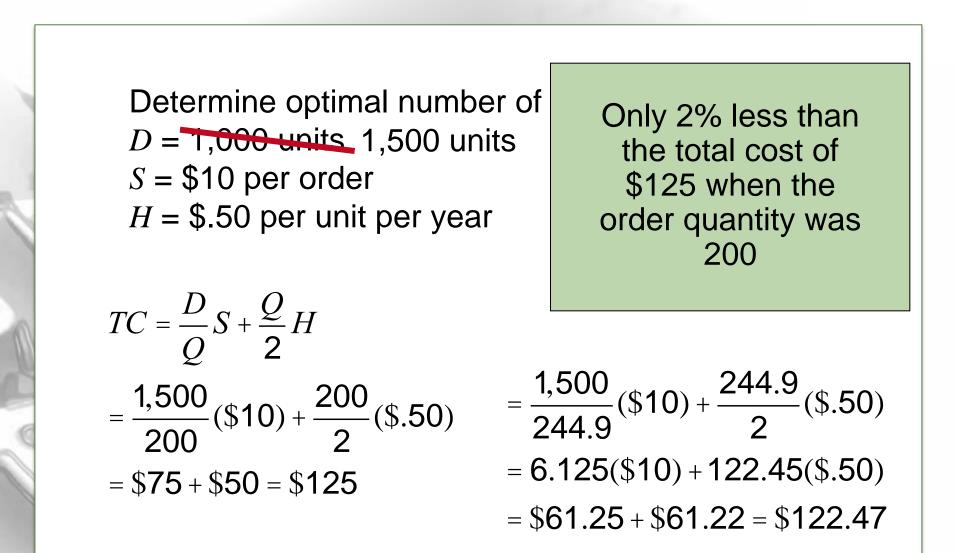

$$Q^* = \sqrt{\frac{2DS}{H}}$$
$$Q^* = \sqrt{\frac{2(1,000)(10)}{0.50}} = \sqrt{40,000} = 200 \text{ units}$$

Determine expected number of orders D = 1,000 units $Q^* = 200 \text{ units}$ S =\$10 per order H =\$.50 per unit per year Expected Expected number of $= N = \frac{\text{Demand}}{\text{Order quantity}} = \frac{D}{Q^*}$ orders $N = \frac{1,000}{200} = 5$ orders per year

А

D = 1,000 units	$Q^* = 200$ units
S = \$10 per orde	N = 5 orders/year
H = \$.50 per uni	it per year
Expected time between =	Number of working days per year
orders	Expected number of orders
	$T = \frac{250}{5} = 50$ days between orders

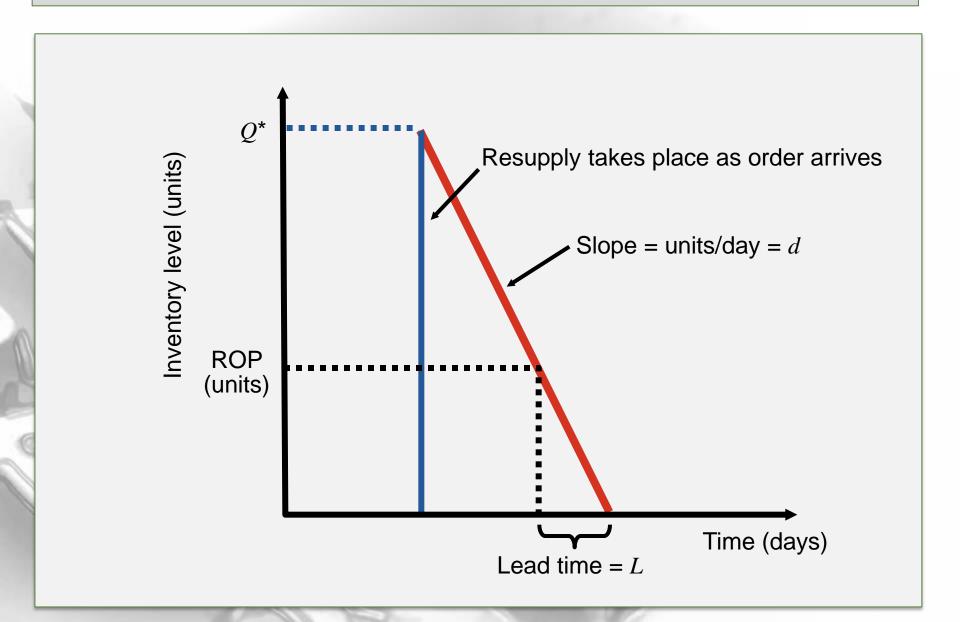
Determine the total annual cost D = 1,000 units $Q^* = 200 \text{ units}$ S =\$10 per order N = 5 orders/year H =\$.50 per unit per year T = 50 days Total annual cost = Setup cost + Holding cost $TC = \frac{D}{Q}S + \frac{Q}{2}H$ $=\frac{1,000}{200}(\$10)+\frac{200}{2}(\$.50)$ =(5)(\$10)+(100)(\$.50)= \$50 + \$50 = \$100



Robust Model

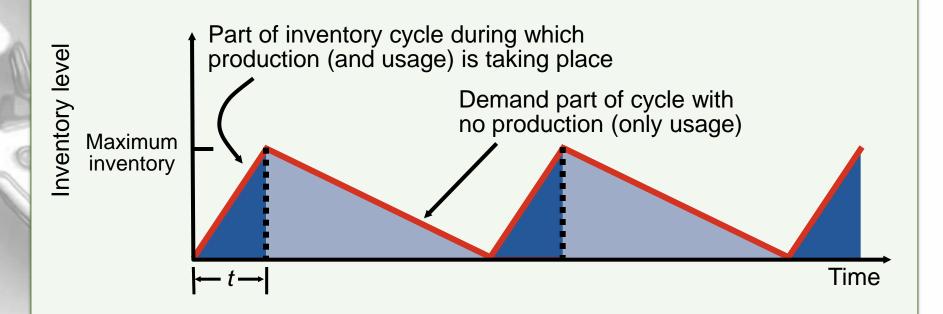
- The EOQ model is robust
- It works even if all parameters and assumptions are not met
- The total cost curve is relatively flat in the area of the EOQ

The EOQ Model



Reorder Points

- EOQ answers the "how much" question
- The reorder point (ROP) tells "when" to order
- Lead time (L) is the time between placing and receiving an order


$$ROP = \begin{pmatrix} Demand \\ per day \end{pmatrix} \begin{pmatrix} Lead time for a new \\ order in days \end{pmatrix}$$
$$= d \times L$$
$$d = \frac{D}{\text{Number of working days in a year}}$$

Reorder Point Curve

Demand = 8,000 iPods per year 250 working day year Lead time for orders is 3 working days, may take 4 \boldsymbol{D} *d* = Number of working days in a year = 8,000/250 = 32 units $ROP = d \times L$ = 32 units per day x 3 days = 96 units = 32 units per day x 4 days = 128 units

- **1**. Used when inventory builds up over a period of time after an order is placed
- 2. Used when units are produced and sold simultaneously

Production Order Quantity Model

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

(Annual inventory) = (Average inventory level) x (Holding cost per unit per year)

Annual inventory = (Maximum inventory level)/2

 $\begin{pmatrix} \text{Maximum} \\ \text{inventory level} \end{pmatrix} = \begin{pmatrix} \text{Total produced during} \\ \text{the production run} \end{pmatrix} - \begin{pmatrix} \text{Total used during} \\ \text{the production run} \end{pmatrix}$ = pt - dt

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

 $\begin{pmatrix} Maximum \\ inventory \ level \end{pmatrix} = \begin{pmatrix} Total \ produced \ during \\ the \ production \ run \end{pmatrix} - \begin{pmatrix} Total \ used \ during \\ the \ production \ run \end{pmatrix}$

$$= pt - dt$$

However, Q = total produced = pt; thus t = Q/p

$$\begin{pmatrix} \text{Maximum} \\ \text{inventory level} \end{pmatrix} = p \left(\frac{Q}{p} \right) - d \left(\frac{Q}{p} \right) = Q \left(1 - \frac{d}{p} \right)$$

$$\text{Holding cost} = \frac{\text{Maximum inventory level}}{2} (H) = \frac{Q}{2} \left[1 - \left(\frac{d}{p} \right) H \right]$$

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

Setup cost = (D/Q)SHolding cost = $\frac{1}{2}HQ\dot{e}\dot{e}\mathbf{1} - (d/p)\dot{u}$ $\frac{D}{O}S = \frac{1}{2}HQ\dot{e}\dot{e}\mathbf{1} - (d/p)\dot{u}$ $Q^2 = \frac{2DS}{H\dot{e}\mathbf{1} - (d/p)\dot{\mathbf{u}}}$ $Q_p^* = \sqrt{\frac{2DS}{H_e^{\acute{e}} 1 - (d/p)_{\acute{u}}^{\acute{u}}}}$

Production Order Quantity Model (Example)

D = 1,000 units S = \$10H = \$0.50 per unit per year p = 8 units per day d = 4 units per day

$$Q_{p}^{*} = \sqrt{\frac{2DS}{H_{e}^{0}1 - (d/p)_{U}^{0}}}$$
$$Q_{p}^{*} = \sqrt{\frac{2(1,000)(10)}{0.50(1 - (4/8))}}$$
$$= \sqrt{\frac{20,000}{0.50(1/2)}} = \sqrt{80,000}$$
$$= 282.8 \text{ hubcaps, or } 283 \text{ hubcaps}$$

Production Order Quantity Model

Quantity Discount Models

- Reduced prices are often available when larger quantities are purchased
- Trade-off is between reduced product cost and increased holding cost

TABLE 12.2 A Quantity Discount Schedule							
DISCOUNT NUMBER	DISCOUNT QUANTITY	DISCOUNT (%)	DISCOUNT PRICE (P)				
1	0 to 999	no discount	\$5.00				
2	1,000 to 1,999	4	\$4.80				
3	2,000 and over	5	\$4.75				

Quantity Discount Models

Total annual cost = Setup cost + Holding cost + Product cost

$$TC = \frac{D}{Q}S + \frac{Q}{2}H + PD$$

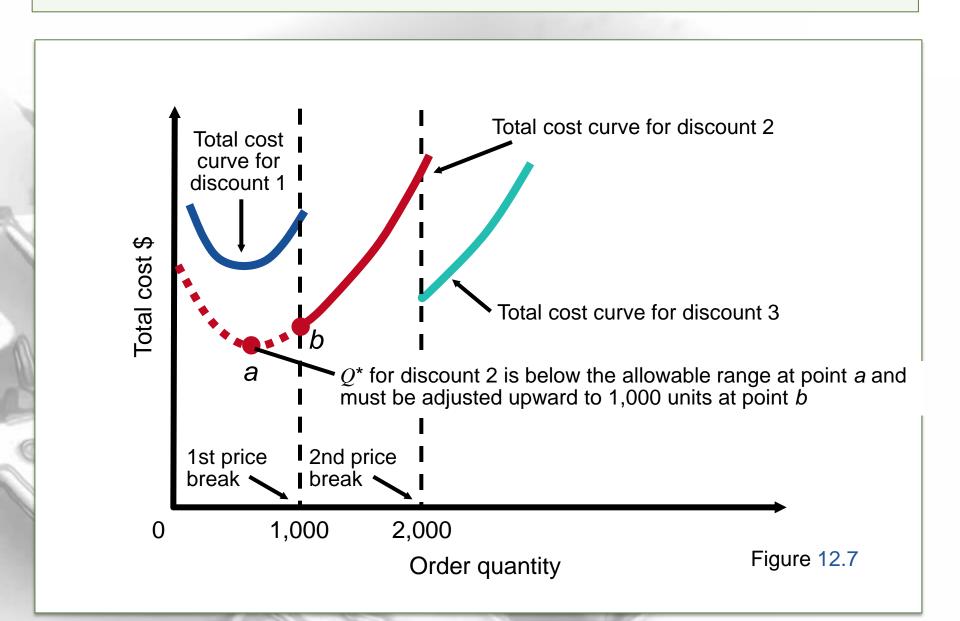
where

Q = Quantity ordered D = Annual demand in uni P = Price per unit

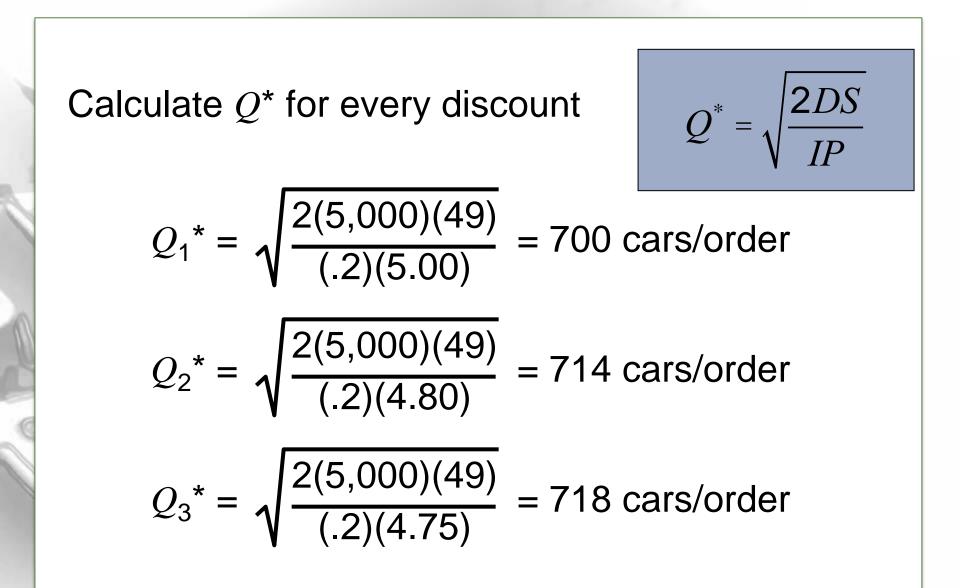
D = Annual demand in units

H = Holding cost per unit per year

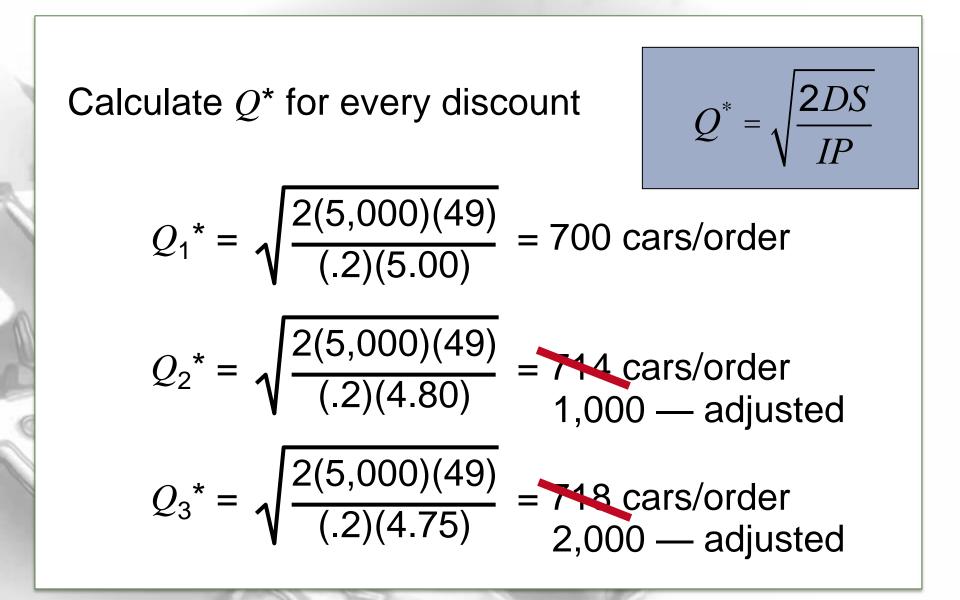
S =Ordering or setup cost per order


$$Q^* = \sqrt{\frac{2DS}{IP}}$$

Because unit price varies, holding cost (H) is expressed as a percent (I) of unit price (P)


Steps in analyzing a quantity discount

- 1. For each discount, calculate *Q**
- 2. If *Q** for a discount doesn't qualify, choose the lowest possible quantity to get the discount
- 3. Compute the total cost for each *Q** or adjusted value from Step 2
- 4. Select the *Q** that gives the lowest total cost


Quantity Discount Models

Quantity Discount Models (Example)

Quantity Discount Models (Example)

Quantity Discount Models (Example)

TABLE 12.3 Total Cost Computations for Wohl's Discount Store								
DISCOUNT NUMBER		ORDER QUANTITY	ANNUAL PRODUCT COST	ANNUAL ORDERING COST	ANNUAL HOLDING COST	TOTAL		
1	\$5.00	700	\$25,000	\$350	\$350	\$25 700		
2	\$4.80	1,000	\$24,000	\$245	\$480	\$24,725		
3	\$4.75	2,000	\$23.750	\$122.50	\$950	ФZ4,022.50		

Choose the price and quantity that gives the lowest total cost

Buy 1,000 units at \$4.80 per unit

