
Decision Support Systems 56 (2013) 439–449

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss
Software project risk analysis using Bayesian networks with
causality constraints
Yong Hu a,⁎, Xiangzhou Zhang b, E.W.T. Ngai c, Ruichu Cai d, Mei Liu e

a Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Sun Yat-sen University, Guangzhou 510006, PR China
b School of Business, Sun Yat-sen University, Guangzhou 510006, PR China
c Department of Management and Marketing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
d Department of Computer Science, Guangdong University of Technology, Guangzhou, PR China
e Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
⁎ Corresponding author.
E-mail addresses: henryhu200211@163.com (Y. Hu)

(X. Zhang), mswtngai@inet.polyu.edu.hk (E.W.T. Ngai),
mei.liu@njit.edu (M. Liu).

0167-9236/$ – see front matter © 2012 Elsevier B.V. All
http://dx.doi.org/10.1016/j.dss.2012.11.001
a b s t r a c t
a r t i c l e i n f o
Available online 8 November 2012
Keywords:
Software project risk analysis
Bayesian networks
Causality analysis
Knowledge discovery
Expert knowledge constraint
Many risks are involved in software development and risk management has become one of the key activities
in software development. Bayesian networks (BNs) have been explored as a tool for various risk management
practices, including the risk management of software development projects. However, much of the present
research on software risk analysis focuses on finding the correlation between risk factors and project out-
come. Software project failures are often a result of insufficient and ineffective risk management. To obtain
proper and effective risk control, risk planning should be performed based on risk causality which can pro-
vide more risk information for decision making. In this study, we propose a model using BNs with causality
constraints (BNCC) for risk analysis of software development projects. Through unrestricted automatic cau-
sality learning from 302 collected software project data, we demonstrated that the proposed model can
not only discover causalities in accordance with the expert knowledge but also perform better in prediction
than other algorithms, such as logistic regression, C4.5, Naïve Bayes, and general BNs. This research presents
the first causal discovery framework for risk causality analysis of software projects and develops a model
using BNCC for application in software project risk management.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The software industry has become one of the fastest-growing in-
dustries. The global software market is estimated to have a value of
US$330 billion in 2014, an increase of 36.1% since 2009 (US$ 242.4
billion) [43]. However, software development is yet a high-risk activ-
ity. The “CHAOS Summary 2009” from the Standish Group reported
that the success rate of global (mainly U.S. and European) software
projects is only 32% [55]. Much previous research has shown that
the most important problem in software engineering is risk manage-
ment, whereas technical issues are only secondary. For example, the
Standish Group's report “EXTREME CHAOS” [54] summarized the rec-
ipe for software project success, that is, the CHAO 10, most of which
are non-technical factors. Risk management is critical to project man-
agement; it is one of the 9 knowledge areas in project management as
defined in the Project Management Body of Knowledge (PMBOK) [42]
and is one of the 25 key process areas as defined in the Capability Ma-
turity Model Integration (CMMI) [9]. McConnell believes that to ob-
tain a 50–70% chance of avoiding time overrun, risk management
, zhxzhou@mail2.sysu.edu.cn
cairuichu@gmail.com (R. Cai),

rights reserved.
only requires 5% of the total project budget [31]. These reasons high-
light the urgency and feasibility of software project risk management.

In the current practice, subjective analysis or expert judgment is
one of the methods often used in project risk management [15]. It is
based on the experience of an expert and is thus inevitably
human-intensive and obscure [16]; likewise, it generally lacks repeat-
ability as experience is not readily shared among different teams
within an organization [35]. Therefore, it is crucial to develop intelli-
gent modeling techniques that can provide more objective, repeat-
able, and visible decision-making support for risk management.
Among various existing intelligent modeling techniques, the Bayesian
network (BN) has attracted much attention, such as those presented
in refs. [1, 16, 28], due to its excellent ability in representing and rea-
soning with uncertainties.

Most research on software project risk analysis focuses on the dis-
covery of correlations between risk factors and project outcomes [13,
24, 60]. At present, studies on BN-based risk analysis of software pro-
jects involve two ways of network construction: (1) experts manually
specify the network to reflect expert knowledge [14, 16], and (2) au-
tomatically learn the network from observational data [27]. Since the
manual method is not based on observational data, it will certainly
contain expert subjective bias. The existing automatic methods for
BN network learning cannot distinguish correlation from causality.
For instance, the edge orientation does not necessarily indicate
which risk should be controlled to change another risk. However

http://dx.doi.org/10.1016/j.dss.2012.11.001
http://dx.doi.org/10.1016/j.dss.2012.11.001
http://www.sciencedirect.com/science/journal/01679236
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2012.11.001&domain=pdf

440 Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
this limitation in existing algorithms is usually neglected. Such re-
search models are not suitable for direct risk control.

Software project practitioners have long complained about the
difficulty in determining the real and direct risks to guide the alloca-
tion of time and resources. Thus causality, rather than correlation, is
of greater interest to industry experts in software project risk plan-
ning because it can determine the causal factors that directly affect
project outcomes. For example, the risk of “project involving the use
of new technology” may be correlated with “immature technology”
because new technology is probably underdeveloped due to its
unidentified bugs. Nevertheless, a new technology does not necessar-
ily mean an immature technology. Whether we can mitigate the for-
mer risk by only focusing on the latter is not certain, and vice versa.
Actually, we are advised to reduce the risks of using a new technology
by referring to pilot investigations, preparing alternative technology,
training of team members. National Aeronautics and Space Adminis-
tration (NASA) considers that risk planning should first “make sure
that the consequences and the sources of the risk are known” and
“plan important risks first” [45]. The Software Engineering Institute
of Carnegie Mellon University (CMU/SEI) requires the risk analysis
process to satisfy the goal of “determining the source of risk”, i.e.,
“the root causes of the risk” [18]. Hence, in risk planning, analyses
of the consequences and risk sources are very important.

In this paper, we propose a novel framework for software project
risk management using BNs with causality constraints (BNCC). Our pri-
mary objective is to perform a causality analysis between risk factors
and project outcomes to achievemore effective risk control. Specifically,
the analysis involves (1) introducing a new modeling framework for
risk causality analysis to discover new causal relationships and validate
existing ones (i.e., practical and/or academic expert knowledge) be-
tween risk factors and project outcomes based on historical data; and
(2) constructing an empirical BN software project risk analysis model
based on the framework, which can be readily used in risk planning.

Compared with other modeling algorithms such as C4.5 and Naïve
Bayes, the proposed BNCC-based model has the following advantages:
(1) strong interpretability— the constructed BN combines datawith ex-
pert knowledge, depicts causal relationships between variables, and
helps obtain better project outcomes or higher probability of project
success; and (2) acceptable predictive accuracy — the final model in
this study has better predictive power compared with other modeling
algorithms, making themodel suitable for capturing the statistical rela-
tionships between risk factors and project outcomes.

This study makes two important contributions. First, it proposes
the first causal discovery framework for risk management of software
projects, which builds an empirical model from real data and incorpo-
rates the causal discovery technique and expert knowledge. This risk
modeling framework can be widely applied to other related domains.
Second, it provides a BNCC model for risk analysis based on data from
real industry software projects. The network has strong interpretabil-
ity and can provide explicit knowledge (causal relationships between
risk factors and project outcomes) of software projects. Subsequently,
such knowledge can help in conducting effective risk analysis and fur-
ther risk planning, which will result in a better implementation of
software project risk management.

This paper is organized as follows. Section 2 provides a review of
related literature. Section 3 describes the proposed risk model and
the modeling concept. Section 4 presents the experimental results. Fi-
nally, Section 5 concludes and discusses limitations of the study.

2. Review of literature

2.1. Risk management of software projects

Risk management was first introduced to software project manage-
ment byBoehm [3] andCharette [6]. According to the “IEEE Standard for
Software Project Management Plans” [22], a software project is defined
as a series of technical and managerial work activities that should meet
the terms and conditions listed in the project agreement. Successful
software project usually means that the project can be completed with-
in the budget and given time, and meet the customers' demand for
high-quality and high-performance.Wallace et al. [60] defined software
project risk as a series of factors or circumstances thatwill be a threat to
the successful completion of a software project.

Boehm [3] summarized the risk management process into two
steps: risk assessment and risk control. Risk assessment involves three
subsidiary steps: risk identification, risk analysis, and risk prioritization.
Risk control also consists of three subsidiary steps: risk-management
planning, risk resolution, and risk monitoring. Risk analysis mainly fo-
cuses on the relationships between risk factors and project outcomes,
and is to prepare for further risk control. In NASA, risk analysis is the
process of determining the extent of the risks, their relationships with
each other, and the most important risks [45].

2.2. Risk analysis of software projects

Numerous statistical and data mining methods have been used to
analyze the relationships between variables. For intelligent risk analysis
of software projects, many works have employed these methods, in-
cluding regression analysis [23], association rules [33], decision trees
[63], fuzzy logic [62], clustering analysis [61], and neural networks
[35]. Jiang and Klein [23], for instance, used multiple regression analysis
to explore thevarious risks that significantly affect themultidimensional
success of information system development. Moreno-García et al. [33]
used association rules to estimate the influence of certain management
policies on the software project output attributes,which includeproduct
quality, time spent, and effort exerted on the project. However, their
methods have only been applied to data generated by a Software Project
Simulator rather than real project data. Xu et al. [63] introduced a hybrid
learning method that combines genetic algorithm and decision trees to
derive optimal subsets of softwaremetrics for risk prediction. Moreover,
Xu et al. [62] developed a fuzzy expert system and illustrated how to
infer the rules about software development in the early phase of its life
cycle. Wallace et al. [61] performed k-means clustering analysis to ex-
plore the trends in risk dimensions across three clusters (i.e., low-, me-
dium-, and high-risk projects), and then examined the influence of
project characteristics (e.g., project scope, sourcing practices, and strate-
gic orientation) on project risk dimensions. Neumann [35] combined
principal component analysis with neural networks to perform software
risk classification and to discriminate high-risk projects with imbal-
anced data sets.

Each method has its unique advantages. Regression analysis can es-
tablish the dependence between variables and can be used for prediction.
Association rules can find rules that can satisfy user-specified minimum
support and confidence based on (conditional) frequency counting. Deci-
sion trees are simple and easy to understand, while neural networks can
capture the non-linear interdependence among variables. Fuzzy logic can
aggregate the scores of risk factors into an overall project risk score based
on fuzzy set theory, which is suitable for inexact risk assessment. Cluster-
ing analysis groups a set of observations into subsets based on themutual
similarity/dissimilarity of observations, without manually pre-defining
specific categories. Unfortunately, noneof thesemethodsweredeveloped
to capture the causality relationships in the form of “A influences B.”
These methods may (unintentionally) discover some genuine cause–ef-
fect relationships, but they are unable to distinguish causality from
correlation.

2.3. BN-based project risk management

BNs have a wide range of real world applications such as in diagno-
sis, forecasting, automated vision, sensor fusion,manufacturing control,
transportation, ecosystemand environmentalmanagement [20, 56, 57].

A

B C D

Fig. 1. A simple BN.

441Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
The application of BNs on project risk management has the follow-
ing advantages [16, 40, 51]: BNs can (1) model uncertainties and pro-
vide probabilistic estimates; (2) combine historical data with expert
experience or prior knowledge; (3) visually model cause–effect rela-
tionships, and thus help identify risk sources, which provide explicit
knowledge for risk analysis and planning; (4) be used for “what-if”
analysis to explore the effect of changes in some nodes on the
changes in other nodes; and (5) be used for sensitivity analysis, diag-
nosis, prediction, classification, and causal reasoning, among others.

Many BN-based studies have been conducted to facilitate the risk
management of software projects [14, 16, 26]. For example, Fan and
Yu [16] proposed a BN-based procedure using a feedback loop to pre-
dict potential risks, identify sources of risks, and advise dynamic re-
source adjustment. Drew Procaccino et al. [14] asked experienced
practitioners to provide insights on important early non-technical is-
sues in software development. They presented the relationships
through a BN, which can be used to identify critical chains of events
for success and predict the probability of success in software
development.

A BN usually consists of a directed acyclic graph (DAG), which rep-
resents the network structure, and an associated set of conditional
probability tables (CPTs), which are the network parameters. Three
common ways to construct a BN are: (1) manually specify DAG and
CPTs by expert opinion (also called expert knowledge or domain
knowledge), such as in refs. [16, 34]; (2) automatically learn DAG
and CPTs using various algorithms based on observational data,
such as in ref. [28]; and (3) manually construct DAG by expert opin-
ion or automatically learn DAG using expert opinion as structural
constraints/restrictions, and then learn CPTs from observational
data, such as in ref. [14].

Networks constructed manually by experts, such as those
presented in refs. [14, 16], conform to the verified causalities (expert
knowledge). This type of network is suitable for risk analysis but can
inevitably result in subjective bias among different experts. Therefore,
more attention is given to the ways of BN automatic learning based
on observational data [28]. Even with the integration of expert
knowledge as structural constraints [27], some difficulties still exist
in distinguishing between correlation and causality in the final net-
work. In software project risk management, correlation and causality
are often used mistakenly for each other; causality analysis has never
been given sufficient attention. As claimed by Pearl [40], “the inter-
pretation of direct acyclic graphs as carriers of independence assump-
tions does not necessarily imply causation,” and in statistical and
artificial intelligence applications, DAGs are often used as causal in-
terpretation tools to account for the observed data.

If risk management proceeds without distinguishing correlation
from causality, then it is difficult to allocate time and resources to
the key risk source (cause) of the project outcome; hence, risk control
will be ineffective.

2.4. Causal discovery

Causality is the relationship between a first event (the cause) and
a second event (the effect), where the second event is a consequence
of the first one [12]. Usually, in a DAG, G with a set of vertices V can be
used to represent causal relationships between variables, where an
edge from A to B in G means that A is a direct cause of B relative to V.

Causality is important in planning and decision making in almost
all fields. For example, in medicine, determining the cause of a disease
helps in prevention and treatment [30]. Moreover, in software project
risk management, identifying the cause for the failure of a project
helps in risk control. By investigating causality, the state of the target
variable can be predicted evenwhen the states of the other factors are
changed.

There are twomain approaches for causal inference: intervention ex-
periments and observational-data-based inference. In both approaches,
the effects of the different values of the independent variable(s) on the
dependent variable(s) are observed. In the intervention experiment ap-
proach, measurements of the system are first taken, then certain factors
are manipulated, and finally additional measurements are taken using
the same procedure. Conversely, the observational approach infers cau-
sality only fromobservational data, without anymanipulation of the fac-
tors. Due to ethical, practical, and cost considerations, among others,
intervention experiment may not be feasible or are too expensive in
some contexts, such as in the risk management of software projects.
These limitations provide the impetus to explore techniques for learning
causality from observational data.

Pearl has made an important contribution to the development of
causal inference both in fundamental theory and practical applica-
tions, such as those presented in refs. [38, 39, 41]. Moreover, causal
discovery technology is applied in various domains, leading to prom-
inent results. For example, Mani and Cooper [29] applied the local
causal discovery algorithm to learn causalities from intensive care
unit discharge summaries and identified the causal factors of clinical
conditions and outcomes. In another paper [30], the authors proposed
a Bayesian local causal discovery algorithm; they applied it to the
Linked Birth/Infant Death data set and found six causal relationships,
three of which seemed plausible. Spirtes and Cooper [49] tested a
causal discovery algorithm on a database of pneumonia patients and
found that the results agree strongly with the opinions of the physi-
cians. Silverstein et al. [47] reported that learning complete causal
models is essentially impossible; nevertheless, the isolated causal re-
lationships that only involve pairs or small sets of items are easier to
interpret. They explored causality, instead of mere associations, in
context of market basket analysis. These previous studies have in-
spired us to perform causal discovery in the domain of software pro-
ject risk management.

3. Methodology

3.1. Causality in BNs

BNs [10] based on graph and probability theories are a widely ac-
cepted tool that can visualize uncertain knowledge and perform effi-
cient reasoning, given the variables and their joint probability
distributions. A BN consists of two parts: a DAG, which indicates con-
ditional (in)dependent relationships among the variables (Fig. 1), and
a set of CPT, which represents the conditional probability distribution
among the variables.

The faithfulness condition of Bayesian graphical theory assumes
that a BN N that faithful to the given distribution P always exists,
where P is a joint probability distribution on the variable set V, i.e., a
one-to-one correspondence between the nodes in BN and the given
variables in V always exists. The faithfulness condition ensures that
we can always find a BN N, which contains complete and sound de-
pendence relationships among the variables in V.

A BN consists of four kinds of basic local structures, as shown in
Fig. 2. Two BN structures (N1 and N2) are independence-equivalent if
they represent the same conditional independence assertions for V,
where V is the set of variables in N1 and N2 [37]. For example,
Fig. 2a, b and c are independence-equivalent BNs. For the convenient
explanation of the difference between the four BN structures, we as-
sume that variable X is not a neighbor of variable Y and there is no de-
pendence path (i.e. block all dependence paths) between variables X

X Y Z (a)
X Y Z (b)
X Y Z (c)
X Y Z (d)

Fig. 2. Four kinds of basic local structures.

442 Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
and Z through other variables. Fig. 2a, b and c imply the same asser-
tion that variable X is conditionally independent of variable Z given
variable Y. However, Fig. 2d is not independence-equivalent to the
other three. And we refer to it as a “V-structure” or a “collider”,
which implies a different assertion that variable X is independent of
variable Z not given variable Y, but variable X is conditionally depen-
dent of variable Z given variable Y.

All four structures shown in Fig. 2 can represent causality, but the
differencemerits more discussion. Independence-equivalent BNs (i.e.,
Fig. 2a, b, and c) express the same dependency information, which
means that they are equally faithful to the joint probability distribu-
tion of the given variables. Hence, we cannot distinguish
independence-equivalent BNs based on data only without any expert
judgment. In contrast, a V-structure, i.e., Fig. 2d, can be exclusively
determined from data without any expert opinion because it has no
independence-equivalent BN.
3.2. V-structure discovery algorithm

In this section,we present ourV-structure discovery algorithmusing
the framework of inductive-causation [41, 58], which can find local
cause–effect relationships (rather than a complete BN) between vari-
ables from observational data. We focus on local cause–effect relation-
ships because learning complete causal models from observational
data is unrealistic and essentially impossible, as claimed in ref. [47].

The proposed algorithm shown in Fig. 3 takes a data set defined on a
variable set V as input and a list of V-structures as output. Each variable
v in V is processed separately in two steps to discover the V-structures
that take v as the center. First, we use the neighbor nodes discovery al-
gorithmproposed in ref. [5] to determine the parents and children node
set PCv of v. Subsequently, we enumerate every candidate V-structure
that takes v as the center, i.e., v1→v←v2, where v1 and v2 belong to
PCv and they are not neighbors (i.e. v1 does not belong to PCv2, and v2
does not belong to PCv1), and then label each candidate as a genuine
Input: a data set of a variable set V

Output: a list of V-structures in the form v1 v v2

For each variable v in the given variable set V, the foll
effect relationships related to v:

(1) Find all neighbor nodes (i.e., parent and child node

(2) For each pair of nodes v1 and v2, perform the follow

i. If v1 is a neighbor of v2 and vice versa, then ski

ii. Choose the smaller of PCv1 – {v} and PCv2 – {v

iii. If v1 and v2 are dependent given S and v for all

Fig. 3. V-structure dis
V-structure if v1 and v2 are always dependent given v and any subset
(excluding v1 and v2) of PCv.

Conditional independence tests are performed to determine the
parents and children node set PCv of variable v and verify the candi-
date V-structure v1→v←v2.. In this study, we use g-squared (also
g2) [50] instead of chi-squared (also χ2) for conditional indepen-
dence tests. Chi-squared tests have been commonly used for indepen-
dence tests because the log-likelihood ratio calculations on which the
g-squared tests are based used to be unduly laborious, while
chi-squared tests are approximations of g-squared tests and requires
less calculation effort. Given that the calculation of the log-likelihood
ratio is no longer a problem, g-squared tests are becoming increasing-
ly used, particularly because they are recommended in the popular
statistics textbook by Sokol and Rohlf [48].

3.3. Expert knowledge constraints

Generally, structural constraints [10] of BNs include existence con-
straint, absence constraint, and partial ordering constraint. Given a
BN N and two variables, A and B, of N, an existence constraint, “A ➔e

B”, means that there must be a direct connection from A to B; an ab-
sence constraint, “A➔a B”, means that there must not be a direct con-
nection from A to B; a partial ordering constraint, “A ➔p B”, means
that if there exists a direct connection between A and B, then it
must be “A ➔ B” while “B ➔ A” is not allowed.

To reveal valuable causality from observational data, imposing
partial ordering constraints is necessary. On one hand, it can take ad-
vantage of the aggregation of expert knowledge and automatic net-
work learning to identify unknown but potentially valuable
causalities (main objective) and to verify the known causalities (sec-
ondary objective). On the other hand, it helps to eliminate the nega-
tive effects of noisy data (especially in the cases when samples are
limited).

The key in adding partial ordering constraints is to control con-
straint granularity and provide authorized knowledge. Our research
sets up constraints defined on risk dimensions. The reasons include
but are not limited to the following. First, partial ordering constraints
among risk dimensions are perspicuous and can easily obtain litera-
ture support and industry approval. However, researchers have sub-
jective biases on partial ordering among specific risk factors. Second,
partial ordering constraints between risk factors cannot discover
“counter” causality, which has a contrary edge orientation compared
to the expert knowledge. Setting constraints for each factor will affect
the knowledge discovery ability. Third, causality is used to describe
the relationship between risk factors and project outcomes. Using a
owing procedure is performed to discover all cause-

s) set PCv of v.

ing in PCv:

p ii) and iii).

} as candidate condition set C.

subsets S of C, then output v1 v v2.

covery algorithm.

Table 1
Risk dimensions and risk factors (Wallace et al., 2004) [59].

Risk dimension Abbr. Risk factor

Organizational
environment risk

Org1 Change in organizational management during
the project

Org2 Corporate politics with negative effects on the
project

Org3 Unstable organizational environment
Org4 Organization undergoing restructuring during

the project
User risk User1 Users resistant to change

User2 Conflict between users
User3 Users with negative attitudes toward the project
User4 Users not committed to the project
User5 Lack of cooperation from users

Requirement risk Req1 Continually changing system
Req2 System requirements not adequately identified
Req3 Unclear system requirements
Req4 Incorrect system requirements

Project complexity
risk

Comp1 Project involves the use of new technology
Comp2 High level of technical complexity
Comp3 Immature technology
Comp4 Project involves the use of technology that has

not been used in prior projects
Planning and control
risk

P&C1 Lack of an effective project management
methodology

P&C2 Project progress not monitored closely enough
P&C3 Inadequate estimation of required resources
P&C4 Poor planning
P&C5 Project milestones not clearly defined
P&C6 Inexperienced project manager
P&C7 Ineffective communication

Team risk Team1 Inexperienced team members
Team2 Inadequately trained development team members
Team3 Team members lack specialized skills required

by the project

Table 2
Product and process performance measures (Wallace et al., 2004) [59].

Performance Abbr. Attribute

Product QS1 The users perceive that the system meets the intended
functional requirements.

QS2 The system meets user expectations with respect to ease
of use, response time, and reliability.

QS3 The application developed is easy to maintain.
QU1 The users are satisfied with the developed application.
QU2 The overall quality of the developed application is high.

Process Time The system was completed within budget.
Cost The system was completed within schedule.

443Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
higher level of granularity (between risk dimensions) will not affect
the discovery of relationships between individuals.

3.4. Modeling framework

To better implement project risk control, this research performs
risk causality analysis. By combining expert knowledge, V-structure
discovery algorithm, and automatic network learning, we establish a
BN for risk analysis.

Expert knowledge can simplify the search for a BN structure
representing a given domain with improved prediction accuracy [10].
Lauría et al. [27] demonstrated how to incorporate existing expert
knowledge (or expertise) as network structural constraints in the pro-
cess of automatic learning of IT implementation BN from real data.
They developed a reasonable model, but their network cannot distin-
guish causality from correlation, which adds to the difficulty of direct
and effective risk planning.

Consequently, we establish a BNCC based on real data. The general
idea is as follows. First, V-structures are discovered. Next, they are
connected to form a causality network (including one or more DAGs)
[58]. Finally, BN automatic learning is performed based on the given
structural constraints defined by the causality network and expert
knowledge. The specific modeling steps include the following:

(1) collect project samples using a structured questionnaire or
other equivalents;

(2) pre-process data (e.g., data cleansing and data discretization);
(3) learn V-structures from the samples and connect them to con-

struct a causality network, which is used as existence constraints;
(4) define the partial ordering constraints between risk dimensions,

according to expert knowledge; and
(5) use existence constraints defined in 3) and partial ordering con-

straints defined in 4) as structural constraints and automatically
learn a BN based on the samples.

4. Application of the methodology

4.1. Software project risk model

Measurements of risks in software projects have been studied since
the 1980s, and various risk classification frameworks, dimensions, and
models have been proposed. Some of these have been used for special
software projects, such as e-commerce [36] and customer relationship
management system [44], among others. However, most of the existing
studies [2, 4, 46, 52] lack a comprehensive and systematic framework.
Boehm [4] developed a top 10 risk identification checklist. Although
these risk factors are considered critical to a software project, they are
not organized in a systematic framework. Barki et al. [2] proposed 35
software risks grouped into five dimensions, namely, technological
newness, application size, expertise, application complexity, and orga-
nizational environment. However, they paid less attention to project
management related risk factors. Schmilt et al. [46] conducted interna-
tional surveys covering three different cultures to develop a software
risk classification framework, which included 14 dimensions and 33
risks. They focused on analyzing the common features and differences
in risk factor rankings across different cultures. Takagi et al. [52]
designed a risk framework from five project viewpoints (i.e., require-
ments, estimates, planning, team organization, and project manage-
ment activities) and identified 22 risk factors. However, their
framework did not cover the risk factors related to the organization en-
vironment; these factors can significantly impact the performance of a
software project [59].

Wallace et al. [59] defined 27 software risks classified into six di-
mensions, as shown in Table 1, and seven project performance mea-
sures classified into two dimensions, as shown in Table 2. In this
research, we use this classification framework because it summarizes
the previous studies, conforms to the socio-technical system theory,
suitable for a wide range of software projects, and has been the
topic of subsequent research [19, 21].

4.2. Sample data set

4.2.1. Data collection and demographics
The current study was conducted in Mainland China. A total of 500

questionnaires were sent out to employees of randomly selected soft-
ware companies that are listed as members of the Guangdong Soft-
ware Industry Association. The names of the members of the
association were arranged in random before the selection to avoid se-
lection bias. The respondents were asked to complete the question-
naires based on their recently concluded software projects. Out of
500, 350 respondents returned the questionnaires, thus yielding a re-
sponse rate of 70%. After discarding the incomplete questionnaires,
302 valid responses were obtained. The summary of the profile de-
mographics is shown in Table 3.

The responses were not filtered because the employed risk model
in this present study was meant for general software projects. Various

Table 3
Demographics of the respondents.

Characteristics Frequency Percent (%)

Level of the respondents
CEO 14 4.64
Project manager 78 25.83
Project technical leader 52 17.22
Development team member 111 36.75
Customer manager 36 11.92
Others 11 3.64

Work experience
Under 3 years 50 16.56
3–6 years 170 56.29
7 or above 82 27.15

Industry
Government 44 14.57
Education 25 8.28
Finance 36 11.92
Information 86 28.48
Health 15 4.97
Manufacturing 35 11.59
Commerce 46 15.23
Insurance 3 0.99
Transportation 10 3.31
Others 2 0.66

Function points
≤500 232 76.82
501–1,000 39 12.91
1,001–5,000 23 7.62
5,001–10,000 6 1.99
≥10,001 2 0.66

444 Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
types of software projects were collected from cross-sectional data, in-
cluding the development of information systems (over 70%), client–
server systems, e-commerce systems, new generation of game systems,
mobile applications, office automation systems, and so on. Among those
samples, 25.2% of the projects are considered successful, whereas the
rest are regarded unsatisfactory or canceled. The success rate
corresponded with the actual software productivity, which is slightly
lower than the average success rate of global software projects (32%,
as reported by the Standish Group [55]). Awide variety of industries, in-
cluding the government (14.57%), information industry (28.48%),
manufacturing (11.59%), and commerce (15.23%), among others, are
represented in the final samples (302). In terms of project scale, more
than 40% of the projects have more than 10 team members and more
than six months of development time. The development scale ranges
from under 500 to over 10,000 function points, and the project, which
has less than 500 function points, is the largest contributor (76.82%).
The respondents are highly qualified individuals who can provide cred-
ible information for the study. Over 80% of the respondents are project
managers (25.83%), project technical leaders (17.22%), or development
team members (36.75%) with a related work experience of more than
three years.

4.2.2. Data pre-processing
All factors aremeasured on afive-point Likert scale.We followed the

methodology introduced by Lauría et al. [27] to discretize the data using
a binary scheme, where s0=“low” and s1=“high” performance (high
performance indicates low risk). According to the Standish Group
[53], a software project is considered completely successful if all aspects
are successful (i.e., completed on-time and on budget with all features
and functions as initially specified), otherwise challenged (i.e. partially
failed) or failed completely. With respect to the two output variables,
we define process performance as “high” when both Time and Cost are
“high”, otherwise as “low”. Similarly, we define product performance
as “high” when QS1, QS2, QS3, QU1, and QU2 are “high”, otherwise as
“low”. We regard projects with “high” product performance and
“high” process performance as successful.

The size of our data set does not permit greater granularity (e.g.,
where s0=“high”, s1=“medium”, and s2=“low”). Assuming an
average of three parents per variable, our binary scheme with 29 vari-
ables requires the estimation of 232 parameters (29×23), comparing
favorably with the 302 available cases.

4.3. Expert knowledge

Wallace et al. [59] studied how software project risks affect project
performance and developed their model based on project manage-
ment literature and the socio-technical systems theory. Their model
is well-received by colleagues and has been further studied [19, 21].
The socio-technical systems theory emphasizes on the fit between
technical and social subsystems. Social subsystem risks consist of or-
ganizational environment risk and user risk, whereas technical
subsystem risks consist of requirement risk and project complexity
risk. Planning & control risk and team risk are grouped into project
management risks.

In ref. [59], the following hypotheses were verified: (1) project
management risk affects process performance and product perfor-
mance; (2) process performance affects product performance; (3) so-
cial subsystem risks and technical subsystem risks affect project
management risks; and (4) social subsystem risks affect technical
subsystem risks. Therefore, we obtain the following partial ordering
constraints among six risk dimensions:

(1) Org, User, Req, Comp, P&C, Team ➔p Process, Product
(2) Process ➔p Product
(3) Org, User, Req, Comp ➔p P&C, Team
(4) Org, User ➔p Req, Comp
4.4. Discovered causality

TheV-structure discovery algorithmwas applied to the collected sam-
ples. In sum, 10 V-structures were determined to cover 14 risk factors
and two project outcomes.We then connected these V-structures to con-
struct a causality network by connecting two V-structureswhich shares a
common node. The resultant causality network has 19 edges (one dupli-
cate causality edge was deleted), as shown in Fig. 4 (risk factors not cov-
ered by the V-structures are not shown). Two V-structures, for example,
“Req4➔P&C3←Team2” and “Req4➔Team1←Team2” can be connected
to the upper-left part of the network (Fig. 4). Themost discovered causal-
ities are in accordance with the current expert knowledge. Only three
dotted edges out of 19 obtained edges showed nonconformity with the
model of Wallace et al. [59], such as “Product➔Team3” and
“Req2➔User4”, which should be reversed. The learneddirectionswere in-
consistent. Generally speaking, the product performance did not affect
the skill of the team member, whereas incomplete requirements were
due to the lack of user commitment. Nonconformity mainly emerged
from the noisy data in the collected samples. After identifying the noisy
data, three dotted edges were deleted, whereas 16 edges were retained.

Compared with the study of Lauría et al. [27], this research does not
add any constraint among risk factors or risk dimensions at this stage.
High conformity of most causal edges with expert knowledge shows
that this causal learningmethod can effectively discover explicit knowl-
edge. Noisy data lead to inconsistent dotted edges between this re-
search and previous expert knowledge. More importantly, all edges
represent causality instead of correlation, which leads to strong and di-
rect guidance for risk control. V-structure learning cannot always gen-
erate a complete network. Hence, we need to further study a BN for
risk prediction and risk analysis.

4.5. BN for software project risk analysis

To construct a model for software project risk analysis, this re-
search establishes a complete BN based on the causality network
shown in Fig. 4.

User4

User5

Org1

Req2

Req4

P&C1P&C2

P&C3

P&C4

P&C6

P&C7

Team1

Team2

Team3

Product

Process

Cause effect relationship

Not satisfied with expert knowledge

Fig. 4. Discovered causality network without constraints.

445Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
4.5.1. Final model
We apply Cheng's BN learning algorithm [7] to construct a com-

plete model. This algorithm, an extension of the Chow and Liu's BN al-
gorithm [8], has three phases: drafting, thickening, and thinning.
Expert knowledge is added (see Section 3.4) as partial ordering con-
straint on the edge orientation among variables. Causal edges (see
Fig. 4) are directly added as existence constraints (i.e. existing edges
of the final BN). Finally, a BN based on the total samples is automati-
cally learned, as shown in Fig. 5. Different types of line shapes repre-
sent different types of edges: the bold line represents the causal edge
found by the V-structure discovery algorithm; the arrow direction of
the edge represents the causal direction; and dotted line represents
the correlation edge, the direction of which has no significance and
can be redirected to a reverse orientation.

4.5.2. Model analysis: causality analysis
In Fig. 5, the risk factors involved in the causal edges include User4

“Users not committed to the project,” Req2 “System requirements not
adequately identified,” User5 “Lack of cooperation from users,” P&C4
“Poor project planning,” and Team3 “Team members lack specialized
skills required by the project,” among others. These risk factors have
been studied in software project risk analysis and some have been
regarded as among the top 10 risks [19, 25, 53]. To improve the “Pro-
cess” and “Product” performances of the project, the abovementioned
key risks must be effectively mitigated. Detailed information implied
in the causality edges is described as follows.

First, we analyze the directed causality between risk factors and
project performance. Req2 is the direct common risk of “Process”
and “Product” performances. User5 is the direct reason for low “Prod-
uct” performance. P&C4 is the direct reason for low “Process” perfor-
mance. These findings well coincide with academic and practical
software engineering knowledge.

Second, we discuss the underlying software engineering knowl-
edge in detail. Req2, User5, and P&C4 (i.e., requirement risks, user
risks, and planning and control risks, respectively) may directly affect
project performance.

Requirement risk is widely regarded as the most important risk in
a software project. The entire project is driven by requirements; thus,
without proper requirement analysis to develop a complete (i.e.,
requirements are adequately identified, or Req2 risk is low) and accu-
rate set of requirements, the possibility of developing a software that
“no one wants to use” increases [25]. In this study, some project man-
agers reported that the real (i.e., most needed) requirements of a pro-
ject are difficult to understand because of ineffective communication
with the users. Thus, “gold-plating” [4] phenomena, i.e., setting too
many unnecessary requirements, often overwhelms the real require-
ments, which inevitably lengthens the project schedule (i.e., increases
the risk of “process” performance). It is one of the most important
reasons for project failure.

User5 risk has direct and indirect effects on both “Product” and
“Process” performances. “User commitment,” which is affected by
user cooperation through the causality “User5➔User4” in our final
model, helps ensure that users are actively involved in the require-
ment acquisition process. It creates a sense of ownership, which in
turn minimizes the risk of the users rejecting the final software [25].
Strong user commitment can even compensate for the lack of execu-
tive commitment [25]. A software project is driven by the users and
not by the developers [32]. Users/customers should cooperate with
project managers and play an important role in defining the
software's functionality requirements. Users have the responsibility
of confirming what the software should look like, what functions
are required, and how the software should work [25].

Project planning can affect the project process. Demarco [11]
regards “inherent schedule flaws” as one of the five core risks, which
indicates that a software project is inherently difficult to schedule be-
cause of the “intangible nature and uniqueness” of software. Project
managers must proactively anticipate and plan for contingency that
can threaten the development process and consequently result in
poor quality software delivered over-time and over-budget [25]. Project
planning is mainly influenced by Org1 “Change in organizational man-
agement during the project” and P&C7 “Ineffective communication.”
As changes in the senior management or change of scopes and objec-
tives in the business process [25], the previous well-defined project
planningmay needmodifications, thus increasing the risk of poor plan-
ning due to a tight or fluctuated project schedule. However, due to poor
internal communication, it is difficult to ensure the accurate and timely
information exchange between the appropriate organizational levels
and entities (e.g., levels within the development team and organization,

Fig. 5. The final BN with causality constraints.

446 Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
within the customer organization, and especially between the develop-
er, the customer, and the user). Thiswill lead to vague and/or unrealistic
project arrangements and scheduling, resulting in poor project plan-
ning and poor process performance.

Within the whole network, there are other causalities that highly
coincide with software project risk management knowledge. For ex-
ample, Team2 “Inadequately trained development team members” is
the reason for Team1 “Inexperienced team members,” whereas Req4
“Incorrect system requirements” is the reason for P&C3 “Inadequate
estimation of required resources.”

4.5.3. Model evaluation: prediction performance and comparison
For the model performance, this study used a 10-fold cross-

validation method to evaluate the prediction accuracy of the learned
BN and compared it with the classic data mining algorithms that can
provide explicit knowledge (through an interpretable model or the
“white-box” model), such as (logistic) regression analysis, decision
trees, and the Naïve Bayes, rather than algorithms that simply provide
classification, such as neural networks, and support vector machine.
We used the algorithms employed in thewell-known data-mining soft-
ware Weka (available at: http://www.cs.waikato.ac.nz/ml/weka/).
The results (see Table 4) show that the prediction accuracy of our
Table 4
Comparison of prediction accuracy (10-fold cross-validation).

Algorithm Product
performance

Process
performance

Parameters Remark

Our proposed
model

75.15% 74.42%

Weka_Logistic 68.87% 70.19% default
Weka_J48 70.86% 72.19% default C4.5
Weka_NaiveBayes 72.85% 71.19% default
Weka_BayesNet 73.18% 66.23% SimpleEstimator -A 0.5

K2 -P 1000 -S BAYES
BAN

Weka_BayesNet 74.17% 68.54% SimpleEstimator -A 0.5
TAN -S BAYES

TAN
proposed model is higher than that of typical data mining algorithms
(e.g., C4.5, Naïve Bayes, TAN, BAN, and logistic regression analysis).
The higher performance of the proposed model is attributed to the in-
corporation of expert knowledge and causality discovery into the
Bayesian network learning process, which can significantly reduce the
negative effect of trivial correlation and improve the reliability of the
discovered causal relation among the variables, thus the proposed
method promote prediction accuracy. Therefore, our model can also
be used for risk prediction.

4.5.4. Model application: risk re-assessment
A BN can provide the reason for the change in conditional proba-

bility of one factor due to the change in the probability of another fac-
tor. This facilitates the measurement of changes in risk probability
during the exploratory risk control of specific risk factors.

To verify whether causality suits the risk control better than corre-
lation, we change the values of causal risk factors (i.e., User5, Req2,
and P&C4) and correlation risk factors (i.e., Req3, P&C1, P&C2, P&C5,
and Team3) separately to observe the changes in the probabilities of
“Process” and “Product” performances. As shown in Table 5, the prob-
abilities of “Process” and “Product” performances attributed to “High”
improved by 29.5% and 14.7%, respectively, by controlling the causal
risk factors (three in total). The probabilities of “Process” and “Prod-
uct” performances attributed to “High” improved by 19.6% and
16.6%, respectively, by controlling the correlation risk factors (five
Table 5
Summary of the sensitivity analysis of project performance.

Process (%) Product (%)

Low High Low High

Current situation 56.7 43.3 58.8 41.2
High=100% of User5, Req2 and P&C4 27.2 72.8 44.1 55.9
High=100% of Req3, P&C1, P&C2, P&C5 and Team3 37.1 62.9 42.2 57.8
High=100% of User5, Req2, Req3, P&C1, P&C2,
P&C4, P&C5, Team3

25.8 74.2 27.6 72.4

http://www.cs.waikato.ac.nz/ml/weka/

447Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
in total). This implies that controlling fewer causal risk factors can re-
sult in better “Process” performance and controlling more correlation
risk factors can yield comparative “Product” performance. In another
case, controlling both causal and correlation risk factors (seven in
total) can achieve even higher “Product” performance as well as com-
parative “Process” performance, while it is more costly thus entails a
trade-off of the input–output ratio or return on investment (ROI). The
results indicate that when we implement risk control, mastering cau-
sality is more effective than correlation: requires less risk control
costs and acquires higher performances.

5. Discussion

Some issues deserve further discussion, with regard to the follow-
ing aspects.

1) Why not conduct intervention experiment? In general, intervention ex-
periment is more effective than the observational-data-based infer-
ence but it entails high costs. It is more appropriate and easy to
perform if the goal is to discover causality at the level of software
module or code because manipulating a module or modifying some
lines of code is easy. In contrast, if the goal is to discover risk causalities
of a software development project, using intervention experiment is
difficult because some risks are uncontrollable (i.e. cannot be manip-
ulated), or too difficult or expensive to control. The numerous risk
combinations make it nearly impossible to test all potential risk cau-
salities. Thus, intervention experiment is scarcely used in risk causality
analysis of an entire software project. As mentioned above,
observational-data-based inference identifies causality relationships
only from data without any manipulation of the observed subjects,
i.e., it relies on large-scale and high-quality samples rather than ex-
pensive or unrealistic experiments. Therefore, this study employs
the observational-data-based inference approach.

2) Incorporating expert knowledge constraint. Learning with expert
knowledge constraints is an important advantage of BNs. It can
lower the complexity of network learning and prevent the BNs
from deviating from common/well-known knowledge due to
noisy data. However, subjective bias may influence the network
due to the excessive use of expert knowledge constraints, and
the results may not agree with the observational data. Hence, in
this study, only verified partial ordering constraints among risk di-
mensions are used.

3) Focusing on the critical software project risks. Three critical risk fac-
tors were identified, including Req2 “System requirements not ad-
equately identified,” User5 “Lack of cooperation from users,” and
P&C4 “Poor project planning.” All of them can directly impact
the “Process” and/or “Product” performances of the project. The
superiority of mitigating these risks in risk control is exemplified
in the risk re-assessment experiment. To increase the probability
of project success, there risk factors should be continuously mon-
itored, being paid more attention and resources than other risk
factors (that involve in the correlation edges of the final BN
shown in Fig. 5).

4) Causality vs. correlation. Compared with the correlation within gen-
eral BNs, the causality in our model is more precise. The direction
of causal edges is meaningful; hence, the effect/consequence can
be influenced by controlling the cause. General BNs do not have
this feature because their edge orientation is somewhatmeaningless
(e.g., correlation is bidirectional.). Thus, the correlation within gen-
eral BNs is not quite suitable for risk control. Similarly, regression
models just capture the correlation between variables.

5) Comparison with other risk analysis models: First, the causality
knowledge in our model is learned from the data (objective) and
not derived from the individual experience of project managers/
experts (subjective). Therefore, our model is more reliable than
other BNs that incorporate subjective knowledge. Second, the
statistical methods for risk analysis are usually used to test hy-
potheses rather than discover causality; moreover, these methods
cannot be used for prediction to a certain extent. For example, the
structural equation modeling (SEM) focuses on the “yet to be
proven” knowledge. It begins with hypothesis formulation of the
underlying causality and then collects data for verification. In con-
trast, our approach is to collect data and then discover causality
from the data, not postulating any hypothesis on causality. In ad-
dition, our model can analyze and predict project risks, demon-
strating the ability to quantify the causal effect of risk factors on
the project outcomes. For instance, if a certain risk appears, the
probabilities of different outcomes can be reasonably predicted.
Third, while regression models just capture the correlation be-
tween variables, our model emphasizes on the causality between
variables.

6. Conclusions and limitations

To perform better risk analysis and risk planning, discovering cau-
sality between risk factors and project outcomes in risk management
is important. This study proposes a V-structure discovery algorithm
and establishes a BN with causality constraints. The proposed risk
modeling framework is a completely new approach, suitable for solv-
ing similar risk management problems in other fields. And we provide
an application case of software project risk analysis and control.

A large sample data was collected and an empirical BNCC model
was established. Most causal edges correspond to current expert
knowledge, which means that causal learning method can effectively
discover explicit knowledge. The model can interpret usable explicit
knowledge (risk–risk and risk–output causality) for risk planning in
the risk management of software projects. At the same time, the pre-
diction accuracy is comparable with other intelligent algorithms. The
model is beneficial in merging risk analysis and risk control to help
implementation of risk management.

This study could significantly contribute to academics and practi-
tioners by establishing a BNCCmodel for risk analysis of software pro-
jects. This type of study has not been previously undertaken in the
field of software project risk management; so it is hoped that this
study will trigger a series of related investigations. In future work, a
more complete and integrated decision support system with BNCC
can be developed to support project managers in making decisions
for risk (response) planning, e.g. ref. [17]. However, this study has
specific limitations. First, the proposed algorithm cannot guarantee
that a complete causal BN (i.e. each edge is a causal edge) can be
constructed from the data. Due to the sample limitation, the causali-
ties found could only construct a sparse/partial causality network.
The more samples are added to the research, the more comprehen-
sive a network could be found. Second, the proposed algorithm can
only find a subset of the underlying causalities, i.e., only the kind
shown in Fig. 2d not those shown in Fig. 2a, b and c. The latter three
kinds of causalities require intervention experiments to verify.

Acknowledgements

This research was partly supported by the National Natural Sci-
ence Foundation of China (71271061, 70801020 and 61100148), the
Science and Technology Planning Project of Guangdong Province,
China (2010B010600034), the Business Intelligence Key Team of
Guangdong University of Foreign Studies (TD1202), and the Natural
Science Foundation of Guangdong province (S2011040004804).

References

[1] C. Bai, Bayesian network based software reliability prediction with an operational
profile, Journal of Systems and Software 77 (2) (2005) 103–112.

[2] H. Barki, S. Rivard, J. Talbot, Toward an assessment of software development risk,
Journal of Management Information Systems 10 (2) (1993) 203–225.

448 Y. Hu et al. / Decision Support Systems 56 (2013) 439–449
[3] B.W. Boehm, Software Risk Management, IEEE Computer Society Press, Les
Alamitos, CA, 1989.

[4] B.W. Boehm, Software risk management: principles and practices, IEEE Software
(1991) 32–41.

[5] R. Cai, Z. Zhang, Z. Hao, BASSUM: a Bayesian semi-supervised method for classifi-
cation feature selection, Pattern Recognition 44 (4) (2011) 811–820.

[6] R. Charette, Software Engineering: Risk Analysis and Management, McGraw-Hill,
Inc., New York, NY, 1989.

[7] J. Cheng, R. Greiner, J. Kelly, D. Bell, W. Liu, Learning Bayesian networks from data:
an information-theory based approach, Artificial Intelligence 137 (1–2) (2002)
43–90.

[8] C. Chow, C. Liu, Approximating discrete probability distributions with depen-
dence trees, IEEE Transactions on Information Theory 14 (3) (2002) 462–467.

[9] CMMI Product Team, Capability Maturity Model Integration (CMMI SM) Version
1.1, CMMI for Systems Engineering, Software Engineering, Integrated Product
and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1),
2002.

[10] L. de Campos, J. Castellano, Bayesian network learning algorithms using structural
restrictions, International Journal of Approximate Reasoning 45 (2) (2007)
233–254.

[11] T. DeMarco, T. Lister, Waltzing with Bears: Managing Risk on Software Projects,
Dorset House Publishing, New York, NY, USA, 2003.

[12] Dictionary.com, "Causality", in: Collins English Dictionary - Complete & Un-
abridged, 10th Edition, (HarperCollins Publishers), 2012.

[13] J. Drew Procaccino, J. Verner, S. Overmyer, M. Darter, Case study: factors for early
prediction of software development success, Information and Software Technol-
ogy 44 (1) (2002) 53–62.

[14] J. Drew Procaccino, J. Verner, M. Darter, W. Amadio, Toward predicting software
development success from the perspective of practitioners: an exploratory Bayes-
ian model, Journal of Information Technology 20 (3) (2005) 187–200.

[15] S. Du, M. Keil, L. Mathiassen, Y. Shen, A. Tiwana, Attention-shaping tools, exper-
tise, and perceived control in IT project risk assessment, Decision Support Sys-
tems 43 (1) (2007) 269–283.

[16] C. Fan, Y. Yu, BBN-based software project risk management, Journal of Systems
and Software 73 (2) (2004) 193–203.

[17] C. Fang, F. Marle, A simulation-based risk network model for decision support in
project risk management, Decision Support Systems 52 (3) (2012) 635–644.

[18] E. Hall, Managing Risk: Methods for Software Systems Development,
Addison-Wesley Reading, MA, 1998.

[19] W. Han, S. Huang, An empirical analysis of risk components and performance on
software projects, Journal of Systems and Software 80 (1) (2007) 42–50.

[20] D. Heckerman, A. Mamdani, M. Wellman, Real-world applications of Bayesian
networks, Communications of the ACM 38 (3) (1995) 24–26.

[21] S. Huang,W. Han, Exploring the relationship between software project duration and
risk exposure: a cluster analysis, Information Management 45 (3) (2008) 175–182.

[22] IEEE Std 1058–1998, IEEE Standard for Software Project Management Plans, 1998.
[23] J. Jiang, G. Klein, Risks to different aspects of system success, Information Man-

agement 36 (5) (1999) 263–271.
[24] J. Jiang, G. Klein, Software development risks to project effectiveness, Journal of

Systems and Software 52 (1) (2000) 3–10.
[25] M. Keil, P. Cule, K. Lyytinen, R. Schmidt, A framework for identifying software pro-

ject risks, Communications of the ACM 41 (11) (1998) 83.
[26] E.J.M. Lauría, P.J. Duchessi, A Bayesian belief network for IT implementation deci-

sion support, Decision Support Systems 42 (3) (2006) 1573–1588.
[27] E. Lauría, P. Duchessi, A methodology for developing Bayesian networks: an appli-

cation to information technology (IT) implementation, European Journal of Oper-
ational Research 179 (1) (2007) 234–252.

[28] E. Lee, Y. Park, J.G. Shin, Large engineering project risk management using a Bayes-
ian belief network, Expert Systems with Applications 36 (3) (2009) 5880–5887.

[29] S.Mani, G. Cooper, Causal Discovery fromMedical Textual Data, in: J.M. Overhage (Ed.),
The AMIA Annual Fall Symposium 2000, Hanley & Belfus, Inc., 2000, pp. 542–546.

[30] S. Mani, G.F. Cooper, Causal Discovery Using a Bayesian Local Causal Discovery Al-
gorithm, in: M. Fieschi, E. Coiera, Y.-C.J. Li (Eds.), Medinfo, IOS Press, 2004,
pp. 731–735.

[31] S. McConnell, Software Project Survival Guide: How to Be Sure Your First Impor-
tant Project Isn't Your Last, Microsoft Press, Redmond, WA, 1997.

[32] F. McFarlan, Portfolio approach to information systems, Harvard Business Review
59 (5) (1981) 142–150.

[33] M. Moreno García, I. Román, F. García Peñalvo, M. Bonilla, An association rule
mining method for estimating the impact of project management policies on soft-
ware quality, development time and effort, Expert Systems with Applications 34
(1) (2008) 522–529.

[34] S. Nadkarni, P.P. Shenoy, A causal mapping approach to constructing Bayesian
networks, Decision Support Systems 38 (2) (2004) 259–281.

[35] D. Neumann, An enhanced neural network technique for software risk analysis,
IEEE Transactions on Software Engineering 28 (9) (2002) 904–912.

[36] E. Ngai, F. Wat, Fuzzy decision support system for risk analysis in e-commerce de-
velopment, Decision Support Systems 40 (2) (2005) 235–255.

[37] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, 2nd ed. Morgan Kaufmann, San Francisco, California, USA, 1991.

[38] J. Pearl, Causal diagrams for empirical research, Biometrika 82 (4) (1995) 669–710.
[39] J. Pearl, From Bayesian Networks to Causal Networks, in: Mathematical Models

for Handling Partial Knowledge in Artificial Intelligence, Plenum Press, New
York, USA, 1995, pp. 157–181.

[40] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University Press,
Los Angeles, USA, 2000.
[41] J. Pearl, T. Verma, A theory of inferred causation, Studies in Logic and the Founda-
tions of Mathematics 134 (1995) 789–811.

[42] Project Management Institute (PMI), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), 4th ed. Project Management Institute, Newtown
Square PA, USA, 2008.

[43] Research and Markets, Software: Global Industry Guide, , 2010.
[44] T. Roh, C. Ahn, I. Han, The priority factor model for customer relationship manage-

ment system success, Expert Systems with Applications 28 (4) (2005) 641–654.
[45] L. Rosenberg, T. Hammer, A. Gallo, Continuous Risk Management at NASA,

presented at the Applied Software Measurement/Software Management Confer-
ence, San Jose, CA, USA, 1999.

[46] R. Schmidt, K. Lyytinen, M. Keil, P. Cule, Identifying software project risks: an In-
ternational Delphi Study, Journal of Management Information Systems 17 (4)
(2001) 5–36.

[47] C. Silverstein, S. Brin, R. Motwani, J. Ullman, Scalable techniques for mining causal
structures, Data Mining and Knowledge Discovery 4 (2) (2000) 163–192.

[48] R. Sokol, F. Rohlf, Biometry: The Principles and Practice of Statistics in Biological
Research, WH Freemand and Company, New York, 1995.

[49] P. Spirtes, G. Cooper, An Experiment in Causal Discovery using a Pneumonia Da-
tabase, in: Artificial Intelligence and Statistics, Morgan Kaufmann Publishers,
1999, pp. 162–168.

[50] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, 2nd ed. The
MIT Press, New York, USA, 2000.

[51] I. Stamelos, L. Angelis, P. Dimou, E. Sakellaris, On the use of Bayesian belief net-
works for the prediction of software productivity, Information and Software
Technology 45 (1) (2003) 51–60.

[52] Y. Takagi, O. Mizuno, T. Kikuno, An empirical approach to characterizing risky
software projects based on logistic regression analysis, Empirical Software Engi-
neering 10 (4) (2005) 495–515.

[53] The Standish Group, The CHAOS Report, , 1994.
[54] The Standish Group, EXTREME CHAOS, , 2001.
[55] The Standish Group, New Standish Group Report Shows More Project Failing and

Less Successful Projects, The Standish Group, Boston, Massachusetts, 2010.
[56] F. Ülengin, S. Önsel, Y. İlker Topçu, E. Aktaş, Ö. Kabak, An integrated transporta-

tion decision support system for transportation policy decisions: the case of Tur-
key, Transportation Research Part A: Policy and Practice 41 (1) (2007) 80–97.

[57] L. Uusitalo, Advantages and challenges of Bayesian networks in environmental
modelling, Ecological Modelling 203 (3–4) (2007) 312–318.

[58] M.A.J. van Gerven, P.J.F. Lucas, T.P. van der Weide, A generic qualitative character-
ization of independence of causal influence, International Journal of Approximate
Reasoning 48 (1) (2008) 214–236.

[59] L. Wallace, M. Keil, A. Rai, How software project risk affects project performance:
an investigation of the dimensions of risk and an exploratory model, Decision Sci-
ences 35 (2) (2004) 289–321.

[60] L. Wallace, M. Keil, A. Rai, Software project risks and their effect on outcomes,
Communications of the ACM 47 (4) (2004) 68–73.

[61] L. Wallace, M. Keil, A. Rai, Understanding software project risk: a cluster analysis,
Information Management 42 (1) (2004) 115–125.

[62] Z. Xu, T. Khoshgoftaar, E. Allen, Application of fuzzy expert systems in assessing
operational risk of software, Information and Software Technology 45 (7)
(2003) 373–388.

[63] Z. Xu, B. Yang, P. Guo, Software risk prediction based on the hybrid algorithm of
genetic algorithm and decision tree, Communications in Computer and Informa-
tion Science 2 (5) (2007) 266–274.

Dr. Yong Hu is currently an Associate Professor and Chair
in the Department of E-commerce, and Director of Insti-
tute of Business Intelligence and Knowledge Discovery at
the Guangdong University of Foreign Studies and Sun
Yat-Sen University. He received his B.Sc in Computer Sci-
ence, M.Phil and Ph.D. in Management Information Sys-
tems from Sun Yat-Sen University. His research interests
are in the areas of business intelligence, quantitative in-
vestment, software project risk management, e-commerce
and decision support systems. He has published works in a
number of journals and conferences such as DSS, ESWA
and IEEE ICDM. Dr. Hu's research is supported by the Na-
tional Natural Science Foundation, the Science and Tech-

nology Planning Project of Guangdong Province.

Xiangzhou Zhang is a Ph.D. student in Sun Yat-sen Uni-
versity and working as an assistant researcher in Institute
of Business Intelligence and Knowledge Discovery at the
Guangdong University of Foreign Studies and Sun Yat-sen
University. He has received his B.S. degree in Computer
Science from Sun Yat-Sen University, and M.S. degree in
Management from Guangdong University of Foreign Stud-
ies. His research interests include data mining, quantita-
tive investment, software project risk management, and
business intelligence.

Unlabelled image

rt S
Prof. Eric Ngai is a Professor in the Department of Man-
agement and Marketing at The Hong Kong Polytechnic
University. His current research interests are in the areas
of E-commerce, Supply Chain Management, Decision Sup-
port Systems and RFID Technology and Applications. He
has published papers in a number of international journals
including MIS Quarterly, Journal of Operations Manage-
ment, Decision Support Systems, IEEE Transactions on Sys-
tems, Man and Cybernetics, Information & Management,
Production & Operations Management, and others. He is
an Associate Editor of European Journal of Information
Systems and serves on editorial board of three internation-
al journals. Prof.Ngai has attained an h-index of 22, and re-

Y. Hu et al. / Decision Suppo
ceived 1490 citations, ISI Web of Science.

Dr. Ruichu Cai received his B.S. in Applied Mathematics and
PhD in Computer Science from South China University of
Technology in 2005 and 2010, respectively. He is currently
an Assistant Professor in Department of Computer Science,
Guangdong University of Technology, Guangzhou, P.R. China
and State Key Laboratory for Novel Software Technology,
Nanjing University, P.R. China. Hewas visiting student of Na-
tional University of Singapore in 2007–2009. His research in-
terests cover a variety of different topics including data
mining, decision support systems, causal inference, associa-
tion rule mining, and feature selection. He has published in
a number of journals and conferences, such as Pattern Recog-
nition, IEEE TKDE, and SIGMOD. Dr. Cai's Research is

supported by the National Natural Science Foundation.
View publication statsView publication stats
Dr. Mei Liu is currently an Assistant Professor in the De-
partment of Computer Science at New Jersey Institute of
Technology. She received her Ph.D. degree in computer
science from the University of Kansas, Lawrence, USA and
completed her postdoctoral training as an NIH-NLM re-
search fellow in the Department of Biomedical Informatics
at Vanderbilt University, Nashville, USA. Her research in-
terest includes data mining, machine learning, text mining,
decision support systems, quantitative investment, and
medical informatics. She has published a number of papers
in conferences and journals such as Bioinformatics, JAMIA,
ESWA, EURASIP Journal on Applied Signal Processing, BMC
Bioinformatics, PLoS ONE, and IEEE ICDM.

449ystems 56 (2013) 439–449

Unlabelled image
Unlabelled image
Unlabelled image
https://www.researchgate.net/publication/262310378

