following table to find the total shipping costs for each potential site. Which should Borders select?

	W			
PLANT	PITTSBURGH	ST. LOUIS	DENVER	CAPACITY
Los Angeles	\$100	\$75	\$50	150
New Orleans	\$ 80	\$60	\$90	225
Philadelphia	\$ 40	\$50	\$90	350
Seattle	\$110	\$70	\$30	350
Demand	200	100	400	

•• **C.10** Dana Johnson Corp. is considering adding a fourth plant to its three existing facilities in Decatur, Minneapolis, and Carbondale. Both St. Louis and East St. Louis are being considered. Evaluating only the transportation costs per unit as shown in the table, decide which site is best.

	FI			
то	DECATUR	MINNEAPOLIS	CARBONDALE	DEMAND
Blue Earth	\$20	\$17	\$21	250
Ciro	\$25	\$27	\$20	200
Des Moines	\$22	\$25	\$22	350
Capacity	300	200	150	

	FROM PROPOSED PLANTS			
то	EAST ST. LOUIS	ST. LOUIS		
Blue Earth	\$29	\$27		
Ciro	\$30	\$28		
Des Moines	\$30	\$31		
Capacity	150	150		

••**C.11** Using the data from Problem C.10 and the unit production costs in the following table, show which locations yield the lowest cost.

LOCATION	PRODUCTION COSTS (\$)
Decatur	\$50
Minneapolis	60
Carbondale	70
East St. Louis	40
St. Louis	50

Additional problems C.12–C.13 are available in MyOMLab.

Problems C.14-C.18 relate to Special Issues in Modeling

•• C.14 Allen Air Conditioning manufactures room air conditioners at plants in Houston, Phoenix, and Memphis. These are sent to regional distributors in Dallas, Atlanta, and Denver. The shipping costs vary, and the company would like to find the least-cost way to meet the demands at each of the distribution centers. Dallas needs to receive 800 air conditioners per month, Atlanta needs 600, and Denver needs 200. Houston has 850 air conditioners available each month, Phoenix has 650, and Memphis has 300. The shipping cost per unit from Houston to Dallas is \$8, to Atlanta \$12, and to Denver \$10. The cost per unit from Phoenix to Dallas is \$10, to Atlanta \$14, and to Denver \$9. The cost per unit from Memphis to Dallas is \$11, to Atlanta \$8, and to Denver \$12. How many units should owner Stephen Allen ship from each plant to each regional distribution center? What is the total transportation cost? (Note that a "dummy" destination is needed to balance the problem.)

••**C.15** For the following Gregory Bier Corp. data, find the starting solution and initial cost using the northwest-corner method. What must you do to balance this problem?

	то				
FROM	w	Х	Y	Z	SUPPLY
А	\$132	\$116	\$250	\$110	220
В	\$220	\$230	\$180	\$178	300
С	\$152	\$173	\$196	\$164	435
Demand	160	120	200	230	

Additional problems C.16–C.18 are available in MyOMLab.

CASE STUDY

Custom Vans, Inc.

Custom Vans, Inc., specializes in converting standard vans into campers. Depending on the amount of work and customizing to be done, the customizing can cost from less than \$1,000 to more than \$5,000. In less than 4 years, Tony Rizzo was able to expand his small operation in Gary, Indiana, to other major outlets in Chicago, Milwaukee, Minneapolis, and Detroit.

Innovation was the major factor in Tony's success in converting a small van shop into one of the largest and most profitable custom van operations in the Midwest. Tony seemed to have a special ability to design and develop unique features and devices that were always in high demand by van owners. An example was Shower-Rific, which was developed by Tony only 6 months after Custom Vans, Inc., was started. These small showers were completely self-contained, and they could be placed in almost any type of van and in a number of different locations within a van. Shower-Rific was made of fiberglass, and contained towel racks, built-in soap and shampoo holders, and a unique plastic door. Each Shower-Rific took 2 gallons of fiberglass and 3 hours of labor to manufacture.

Most of the Shower-Rifics were manufactured in Gary in the same warehouse where Custom Vans, Inc., was founded. The manufacturing plant in Gary could produce 300 Shower-Rifics in a month, but this capacity never seemed to be enough. Custom Van shops in all locations were complaining about not getting enough Shower-Rifics, and because Minneapolis was farther away from Gary than the other locations, Tony was always inclined to ship Shower-Rifics to the other locations before Minneapolis. This infuriated the manager of Custom Vans at Minneapolis, and after many heated discussions, Tony decided to start another manufacturing plant for Shower-Rifics at Fort Wayne, Indiana. The manufacturing plant at Fort Wayne could produce 150 Shower-Rifics per month. The manufacturing plant at Fort Wayne was still not able to meet current demand for Shower-Rifics, and Tony knew that the demand for his unique camper shower would grow rapidly in the next year. After consulting with his lawyer and banker, Tony concluded that he should open two new manufacturing plants as soon as possible. Each plant would have the same capacity as the Fort Wayne manufacturing plant. An initial investigation into possible manufacturing locations was made, and Tony decided that the two new plants should be located in Detroit, Michigan; Rockford, Illinois; or Madison, Wisconsin. Tony knew that selecting the best location for the two new manufacturing plants would be difficult. Transportation costs and demands for the various locations would be important considerations.

The Chicago shop was managed by Bill Burch. This shop was one of the first established by Tony, and it continued to outperform the other locations. The manufacturing plant at Gary was supplying 200 Shower-Rifics each month, although Bill knew that the demand for the showers in Chicago was 300 units. The transportation cost per unit from Gary was \$10, and although the transportation cost from Fort Wayne was double that amount, Bill was always pleading with Tony to get an additional 50 units from the Fort Wayne manufacturer. The two additional manufacturing plants would certainly be able to supply Bill with the additional 100 showers he needed. The transportation costs would, of course, vary, depending on which two locations Tony picked. The transportation cost per shower would be \$30 from Detroit, \$5 from Rockford, and \$10 from Madison.

Wilma Jackson, manager of the Custom Van shop in Milwaukee, was the most upset about not getting an adequate supply of showers. She had a demand for 100 units, and at the present time, she was only getting half of this demand from the Fort Wayne manufacturing plant. She could not understand why Tony didn't ship her all 100 units from Gary. The transportation cost per unit from Gary was only \$20, while the transportation cost from Fort Wayne was \$30. Wilma was hoping that Tony would select Madison for one of the manufacturing locations. She would be able to get all the showers needed, and the transportation cost per unit would only be \$5. If not in Madison, a new plant in Rockford would be able to supply her total needs, but the transportation cost per unit would be twice as much as it would be from Madison. Because the transportation cost per unit from Detroit would be \$40, Wilma speculated that even if Detroit became one of the new plants, she would not be getting any units from Detroit.

Custom Vans, Inc., of Minneapolis was managed by Tom Poanski. He was getting 100 showers from the Gary plant. Demand was 150 units. Tom faced the highest transportation costs of all locations. The transportation cost from Gary was \$40 per unit. It would cost \$10 more if showers were sent from the Fort Wayne location. Tom was hoping that Detroit would not be one of the new plants, as the transportation cost would be \$60 per unit. Rockford and Madison would have a cost of \$30 and \$25, respectively, to ship one shower to Minneapolis.

The Detroit shop's position was similar to Milwaukee's—only getting half of the demand each month. The 100 units that Detroit did receive came directly from the Fort Wayne plant. The transportation cost was only \$15 per unit from Fort Wayne, while it was

\$25 from Gary. Dick Lopez, manager of Custom Vans, Inc., of Detroit, placed the probability of having one of the new plants in Detroit fairly high. The factory would be located across town, and the transportation cost would be only \$5 per unit. He could get 150 showers from the new plant in Detroit and the other 50 showers from Fort Wayne. Even if Detroit was not selected, the other two locations were not intolerable. Rockford had a transportation cost per unit of \$35, and Madison had a transportation cost of \$40.

Tony pondered the dilemma of locating the two new plants for several weeks before deciding to call a meeting of all the managers of the van shops. The decision was complicated, but the objective was clear—to minimize total costs. The meeting was held in Gary, and everyone was present except Wilma.

- *Tony:* Thank you for coming. As you know, I have decided to open two new plants at Rockford, Madison, or Detroit. The two locations, of course, will change our shipping practices, and I sincerely hope that they will supply you with the Shower-Rifics that you have been wanting. I know you could have sold more units, and I want you to know that I am sorry for this situation.
- Dick: Tony, I have given this situation a lot of consideration, and I feel strongly that at least one of the new plants should be located in Detroit. As you know, I am now only getting half of the showers that I need. My brother, Leon, is very interested in running the plant, and I know he would do a good job.
- Tom: Dick, I am sure that Leon could do a good job, and I know how difficult it has been since the recent layoffs by the auto industry. Nevertheless, we should be considering total costs and not personalities. I believe that the new plants should be located in Madison and Rockford. I am farther away from the other plants than any other shop, and these locations would significantly reduce transportation costs.
- *Dick:* That may be true, but there are other factors. Detroit has one of the largest suppliers of fiberglass, and I have checked prices. A new plant in Detroit would be able to purchase fiberglass for \$2 per gallon less than any of the other existing or proposed plants.
- *Tom:* At Madison, we have an excellent labor force. This is due primarily to the large number of students attending the University of Wisconsin. These students are hard workers, and they will work for \$1 less per hour than the other locations that we are considering.
- *Bill:* Calm down, you two. It is obvious that we will not be able to satisfy everyone in locating the new plants. Therefore, I would like to suggest that we vote on the two best locations.
- *Tony:* I don't think that voting would be a good idea. Wilma was not able to attend, and we should be looking at all of these factors together in some type of logical fashion.

Discussion Question

Where would you locate the two new plants? Why?

Source: From Quantitative Analysis for Management, B. Render, R. M. Stair, M. Hanna, and T. Hale. 12th ed. Copyright © 2015. Reprinted by permission of Pearson Publishing, Upper Saddle River, NJ.

 Additional Case Study: Visit MyOMLab for this free case study: Consolidated Bottling (B): This case involves determining where to add bottling capacity.